Study Design: The range of motion (ROM) of lumbar cadaver spines was measured during flexion, extension, axial rotation, and lateral bending following graded facetectomies and implantation of an X STOP interspinous spacer implant.

Objective: The study was performed undertaken to understand better the influence of the interspinous spacer implant on the kinematics of the lumbar spine following graded facetectomies.

Summary Of The Background Data: Lateral lumbar spinal stenosis is often treated with a unilateral or bilateral facetectomy procedure. Previous biomechanical research has shown that a facetectomy may increase the ROM during flexion and axial rotation.

Methods: Seven cadaver spines (L2-L5) were tested in flexion, extension, axial rotation, and lateral bending, and the individual ROM of each motion segment was measured. Specimens were tested intact and following 3 graded facetectomies (i.e., unilateral medial facetectomy [UMF], unilateral total facetectomy [UTF], and bilateral total facetectomy [BTF]), with and without the X STOP.

Results: A BTF caused a significant increase in ROM during flexion and axial rotation but not extension and lateral bending. The UMF and UTF did not affect the ROM during any of the 4 motions. The interspinous implant: (1) significantly decreased the flexion ROM for the intact, UMF, UTF, and BTF treatments; (2) significantly decreased the extension ROM for the intact, UMF, and BTF treatments but not the UTF (P < 0.13); (3) had no significant effect on the axial rotation ROM; and (4) significantly increased the lateral bending ROM for the UMF, UTF, and BTF treatments.

Conclusions: The results suggest that the implant may be used in conjunction with a UMF or UTF. However, the X STOP should not be used in conjunction with BTF.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.brs.0000164152.32734.d2DOI Listing

Publication Analysis

Top Keywords

axial rotation
16
lateral bending
16
umf utf
16
rom
9
interspinous implant
8
implant conjunction
8
facetectomy procedure
8
cadaver spines
8
flexion extension
8
extension axial
8

Similar Publications

Purpose: To clarify the influence of biomechanics on post-operative clinical outcomes in bicruciate-retaining total knee arthroplasty (BCR-TKA).

Methods: Severe medial osteoarthritis who underwent BCR-TKA were examined. Each patient was asked to perform a squat (weight-bearing [WB]) and active assisted knee flexion (non-WB [NWB]) under single fluoroscopy surveillance.

View Article and Find Full Text PDF

Background: Hallux valgus (HV) is a complex, multiplanar deformity. In this study, we examined the interrelationships between various components of this deformity using weightbearing computed tomography (WBCT). We hypothesized that the severity of traditional axial plane deformities would correlate with malpositioning of the metatarsosesamoid complex, first-ray coronal rotational deformity, and malalignment of the hindfoot and midfoot.

View Article and Find Full Text PDF

Preserving Cervical Mobility: A Novel Robot-Assisted Approach for Atlas Fracture Fixation.

Am J Case Rep

January 2025

Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

BACKGROUND The management of unstable atlas fractures remains a subject of ongoing debate and controversy. The conservative surgical treatment commonly involves fusion, resulting in severe loss of cervical spine mobility, and a large incisions and extensive tissue dissection are required. We aim to introduce a novel concept and surgical approach for treating atlas fracture, one that involves minimizing trauma while maintaining mobility of the upper cervical spine without resorting to fusion.

View Article and Find Full Text PDF

Effect of Clamped Member Material and Thickness on Bolt Self-Loosening Under Transverse Loads.

Materials (Basel)

January 2025

Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada.

Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading.

View Article and Find Full Text PDF

Purpose: Currently, no gold standard exists for 3D analysis of virtually planned surgery accuracy postoperatively. The aim of this study was to present a new, validated and standardised methodology for 3D postoperative assessment of surgical accuracy in patients undergoing 3D virtually planned and guided corrective osteotomies.

Methods: All patients who underwent 3D planned corrective osteotomy in 2021-2022 at our center with a postoperative CT were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!