Little is known about the transcriptional networks that regulate myotube production in vertebrates. In the present study, we have used a genomic approach to discover novel genes associated with myotube formation in fast muscle of the tiger puffer fish, Takifugu rubripes. The number of fast muscle fibers per myotome increased until 1.2 kg body mass, and subsequent growth was by fiber hypertrophy alone. Forward and reverse subtracted cDNA libraries were prepared from a 180-g (myotube +) and a 3.4-kg (myotube -) fish, and 1,452 expressed sequence tags (ESTs) were obtained. After these ESTs were grouped into nonredundant clusters and housekeeping and structural genes were eliminated, 57 genes were selected and quantitative PCR was used to investigate their expression levels in different tissues from independent groups of myotube(-) and myotube(+) fish acclimated to the same environmental conditions and diet. Eleven novel genes were found to be consistently differentially expressed, but only four showed appropriate tissue-specific expression. These four genes were upregulated 5-25 times in fast muscle of myotube(-) relative to myotube(+) growth stages, while their expression remained unchanged in the other tissues studied. The novel genes identified, which are also present in other vertebrate genomes, may play a role in inhibiting myotube formation in vertebrate muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/physiolgenomics.00087.2005 | DOI Listing |
Melanoma is an aggressive type of skin cancer that arises from melanocytes, the cells responsible for producing skin pigment. In contrast to non-melanoma skin cancers like basal cell carcinoma and squamous cell carcinoma, melanoma is more invasive. Melanoma was distinguished by its rapid progression, high metastatic potential, and significant resistance to conventional therapies.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
The animal gut microbiome is a complex system of diverse, predominantly anaerobic microbiota with secondary metabolite potential. These metabolites likely play roles in shaping microbial community membership and influencing animal host health. As such, novel secondary metabolites from gut microbes hold significant biotechnological and therapeutic interest.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New Area, Tianjin, 300450, China.
Gastric cancer (GC), a prevalent malignancy worldwide, encompasses a multitude of biological processes in its progression. Recently, ferroptosis, a novel mode of cell demise, has become a focal point in cancer research. The microenvironment of gastric cancer is composed of diverse cell populations, yet the specific gene expression profiles and their association with ferroptosis are not well understood.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
The discovery at the end of the 20th century of genes that induce cell death revolutionised the biocontaintment of genetically manipulated bacteria for environmental or agricultural applications. These bacterial 'killer' genes were then assayed for their potential to target and control malignant cells in human cancers. The identification of the bacteriomes in different human organs and tissues, coupled with the observation that bacteria tend to accumulate near tumours, has opened new avenues for anti-cancer strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!