Antisecretory Factor (AF) is a protein that has been implicated in the suppression of intestinal hypersecretion and inflammation. Intestinal secretion and inflammation are partly under local and central neural control raising the possibility that AF might exert its action by modulating neural signaling. In the present study we have investigated whether AF can modulate central synaptic transmission. Evoked glutamatergic and GABAergic synaptic transmissions were investigated using extracellular recordings in the CA1 region of hippocampal slices from adult rats. AF (0.5 microg/ml) suppressed GABA(A)-mediated synaptic transmission by about 40% while having no effect on glutamatergic transmission. Per oral administration of cholera toxin as well as feeding of rats with a diet containing hydrothermally processed cereals, known to upregulate endogenous AF plasma activity, mimicked the effect of exogenously administered AF on hippocampal GABAergic transmission. Our results identify AF as a neuromodulator and further raise the possibility that the hippocampus and AF are involved in a gut-brain loop controlling intestinal secretion and inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2005.01.018DOI Listing

Publication Analysis

Top Keywords

antisecretory factor
8
gabaergic transmission
8
intestinal secretion
8
secretion inflammation
8
synaptic transmission
8
transmission
5
factor modulates
4
modulates gabaergic
4
transmission rat
4
rat hippocampus
4

Similar Publications

Traumatic brain injury (TBI) is caused by an external mechanical force to the head, resulting in abnormal brain functioning and clinical manifestations. Antisecretory factor (AF16) is a potential therapeutic agent for TBI treatment due to its ability to inhibit fluid secretion and decrease inflammation, intracranial pressure, and interstitial fluid build-up, key hallmarks presented in TBI. Here, we investigated the effect of AF16 in an in vitro model of neuronal injury, as well as its impact on key components of the autophagy pathway and mitochondrial dynamics.

View Article and Find Full Text PDF

The Antisecretory Factor (AF) is a protein that can reduce intestinal hypersecretion and various inflammation disorders . Discovered in many mammalian tissues and plasma, its mechanism of action remains unknown. Interestingly, its induction has been found to counteract vertigo in patients with Méniere's disease.

View Article and Find Full Text PDF

Background: Antisecretory Factor (AF) is a protein present in breastmilk that regulates inflammatory processes. We aimed to investigate the level of AF in mothers' own milk (MOM) in relation to sepsis and other neonatal morbidities in preterm infants.

Methods: Samples of breastmilk and infant plasma were collected at 1, 4, and 12 weeks after birth from 38 mothers and their 49 infants born before 30 weeks gestation.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite the best available treatment, prognosis remains poor. Current standard therapy consists of surgical removal of the tumor followed by radiotherapy and chemotherapy with the alkylating agent temozolomide (TMZ).

View Article and Find Full Text PDF

The antisecretory factor (AF) is an endogenous protein that counteracts intestinal hypersecretion and various inflammation conditions in vivo. It has been detected in many mammalian tissues and plasma, but its mechanisms of action are largely unknown. To study the pharmacological action of the AF on different GABA receptor populations in cerebellar granule cells, we took advantage of the two-photon uncaging method as this technique allows to stimulate the cell locally in well-identified plasma membrane parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!