We have designed and synthesized several structural isomers of anthramycin (heterocycles 2, 3, 5, 6, and 8) and found that, in particular, pyrrolobenzodiazepine 8 induces DNA cleavage and formation of small fragments of DNA. The cytotoxic effects of 8 were manifested with both non-transformed primary neuronal/glial cells and transformed Jurkat cells. The other compounds did not change the viability either of transformed or of non-transformed cells, and induced DNA cleavage to a lesser extent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2005.05.006DOI Listing

Publication Analysis

Top Keywords

neuronal/glial cells
8
dna cleavage
8
action novel
4
novel pyrrolo[12-c][13]benzodiazepine
4
pyrrolo[12-c][13]benzodiazepine viability
4
viability jurkat
4
jurkat neuronal/glial
4
cells
4
cells designed
4
designed synthesized
4

Similar Publications

Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury.

CNS Neurosci Ther

January 2025

Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.

Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Background: The global incidence of type 2 diabetes (T2D) is rapidly increasing, with retinopathy being its most common complication and a leading cause of preventable blindness. Although the precise mechanisms involved in the development of diabetic retinopathy (DR) are not fully understood, defective immunomodulation is a recognized key factor in its pathophysiology. Regulatory T cells (Treg) regulate inflammation and promote regeneration, and while they are known to have important anti-inflammatory and neuroprotective roles in other tissues, including central nervous system, their role in the diabetic retina remains largely unknown.

View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs), a heterogeneous group of cell-derived, membrane-enclosed vesicles bearing cell-specific epitopes, have been demonstrated to play a crucial role in neuronal-glial communication and the orchestration of neuroinflammatory processes. However, the existing evidence regarding their function as biomarkers and their role in the pathobiology of traumatic spinal cord injuries (tSCI), particularly in humans, is scarce.

Objective: The primary goal of this study was to investigate whether a distinct pattern of EV surface epitopes detected in the plasma of individuals suffering from spinal cord injury is indicative of tSCI.

View Article and Find Full Text PDF

Neuroinflammatory and neurodegenerative diseases are influenced by the complex interplay of different cell types within the brain, and understanding the proportions and dynamics of neuronal, glial, and endothelial cells is crucial for deciphering the mechanisms of these diseases. Certain risk factors, such as age and sex differences, are thought to play a significant role in the susceptibility, progression, and response to neurological disease. Therefore, investigation of age- and sex-related differences in cell type proportions is needed to elucidate the biological basis of these diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!