In this paper a new bifunctional polymeric resin (LS-2) was synthesized by introducing sulfonic groups onto the surface of the resin during the post-crossing of chloromethyl low crosslinking macroporous poly-styrene resin, and the comparison of the adsorption properties of LS-2 with Amberlite XAD-4 toward aniline and 4-methylaniline in aqueous solutions was made. The study focuses on the static equilibrium adsorption behaviors, the adsorption thermodynamics, and the column dynamic adsorption and desorption profiles. Freundlich model gives a perfect fitting to the isotherm data. Although the specific surface area of LS-2 is lower than that of Amberlite XAD-4, the adsorbing capacities for these two adsorbates on LS-2 are higher than those on Amberlite XAD-4 within the temperature range 288-318 K, which is contributed to microporous structure and the polar groups on the network of LS-2 resins. The adsorption for aniline or 4-methylaniline on LS-2 was proved to be an endothermic process and increasing temperature was favorable. From the studies on the adsorption thermodynamics, static equilibrium adsorption, and the desorption conditions, an important conclusion can be drawn that the adsorption for aniline or 4-methylaniline on the LS-2 is a coexistence process of physical adsorption and chemical transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2005.05.001 | DOI Listing |
Cell Chem Biol
June 2021
Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; TU Dortmund University, Emil-Figge-Str. 72, 44221 Dortmund, Germany. Electronic address:
Phenotypic screening for bioactive small molecules is typically combined with affinity-based chemical proteomics to uncover the respective molecular targets. However, such assays and the explored bioactivity are biased toward the monitored phenotype, and target identification often requires chemical derivatization of the hit compound. In contrast, unbiased cellular profiling approaches record hundreds of parameters upon compound perturbation to map bioactivity in a broader biological context and may link a profile to the molecular target or mode of action.
View Article and Find Full Text PDFEnviron Res
March 2021
Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
5-methylbenzotriazole (5-TTri) and 5-chlorobenzotriazole (CBT) are two benzotriazole derivatives widely used in various industrial and domestic applications. This paper reports on the photochemical behaviour of 5-TTri and CBT in aqueous solutions under UV radiation at 254 nm and the influences of pH, salinity, metal species and humic acid (HA) on their photo-transformation processes. The photolysis of 5-TTri and CBT under the exposure to UV light were found to follow the first-order reaction kinetic in all cases with half-lives ranging from 7.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
August 2020
Department of Pharmacy, University of Science and Technology, Ibb Branch, Ibb, Yemen.
The title compound, CHClNO, was synthesized by condensation reaction of 2-hy-droxy-5-methyl-benzaldehyde and 3-chloro-4-methyl-aniline, and crystallizes in the monoclinic space group 2/c. The 3-chloro-benzene ring is inclined to the phenol ring by 9.38 (11)°.
View Article and Find Full Text PDFGel adsorbents are promising for pollutant removal from the wastewater. Herein, an acylhydrazone gel is developed from acylhydrazide-terminated pentaerythritol (PAT) and 2,4,6-triformylphloroglucinol (TFP) based on dynamic covalent acylhydrazone chemistry. PAT-TFP gel is stable under various conditions, while it shows reversible Cu adsorption and desorption.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
August 2019
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
The residues of aniline and its derivatives are serious environment pollutants. Aniline dioxygenase (AD) derived from aerobic bacteria catalyzes the conversion of aniline to catechol, which has potential use in the bioremediation of aromatic amines and biorefining process. AD contains four components: a glutamine synthetase (GS)-like enzyme, a glutamine amidotransferase (GAT)-like enzyme, oxygenase, and reductase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!