Cytokinin oxidase/dehydrogenase (CKO/CKX) is a flavoenzyme, which irreversibly inactivates cytokinins by severing the isoprenoid side chain from the adenine/adenosine moiety. There are several genes coding for the enzyme in maize (Zea mays). A Z. mays CKO1 cDNA was cloned in the yeast Yarrowia lipolytica to achieve heterologous protein expression. The recombinant ZmCKO1 was recovered from cultures of transformed yeasts and purified using several chromatographic steps. The enzyme was obtained as a homogeneous protein in a remarkably high-yield and its molecular and kinetic properties were characterized. The enzyme showed a molecular mass of 69 kDa, pI was 6.3. Neutral sugar content of the molecule was 22%. Absorption and fluorescence spectra were in accordance with the presence of FAD as a cofactor. Peptide mass fingerprinting using MALDI-MS correctly assigned the enzyme in MSDB protein database. The enzyme showed a relatively high degree of thermostability (T50=55 degrees C for 30 min incubation). The following pH optimum and K(m) values were determined for natural substrates (measured in the oxidase mode): pH 8.0 for isopentenyl adenine (K(m)=0.5 microM), pH 7.6 for isopentenyl adenosine (K(m)=1.9 microM), pH 7.9 for zeatin (K(m)=1.5 microM) and pH 7.3 for zeatin riboside (K(m)=2.0 microM). ZmCKO1, functioning in the oxidase mode, catalyzes the production of one molecule of H2O2 per one molecule of cytokinin substrate. This finding represents clear evidence for the existence of dual enzyme functionality (oxygen serves as a cosubstrate in the absence of better electron acceptors).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2005.04.006 | DOI Listing |
BMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.
Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.
View Article and Find Full Text PDFNat Commun
January 2025
School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.
Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!