The effect of dynamic culture conditions on neocartilage formation in type II collagen modified polyester scaffolds was studied. Porcine or human articular chondrocytes were seeded in the scaffolds. The cell-scaffold constructs were cultivated statically, in a rotating-type bioreactor or in a shaker for up to 4 weeks. The cell proliferation, morphology, NO production, synthesis of proteoglycans and collagen, and mechanical properties were evaluated. The results demonstrated that the rotating-type bioreactor promoted the growth of primary porcine chondrocytes, helped to maintain their phenotype, and increased the production of extracellular matrix. The constructs also had the largest dynamic compressive modulus. In the static condition, chondrocytes occupied only the outer margin of the cell-polymer constructs. The poor mass transfer in static condition may have caused a lower pH value in the middle of the constructs and lead further to faster scaffold degradation as well as the weakest neocartilage. Constructs in the shaker produced the highest amount of NO as well as the lowest amount of cells and matrix production. Human or porcine chondrocytes of the second passage seeded in scaffolds were much less viable, with the largest amount of cells and matrix when cultured in rotating-type bioreactors. A larger seeding density was required to form neocartilage from passaged adult chondrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2005.29080.xDOI Listing

Publication Analysis

Top Keywords

neocartilage formation
8
formation type
8
type collagen
8
collagen modified
8
modified polyester
8
polyester scaffolds
8
seeded scaffolds
8
rotating-type bioreactor
8
porcine chondrocytes
8
static condition
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!