Neuronal energy needs are mainly covered via mitochondrial oxidative phosphorylation. Even if the energy supply appears identical in immature and adult brain, nevertheless quantitative differences exist. The present study focuses on the adaptations in cellular energy metabolism caused by the neuronal maturation. As main parameters of oxidative phosphorylation, cellular oxygen consumption and mitochondrial membrane potential were measured in isolated rat cortical cells using a Clark-type oxygen electrode and microfluorometric techniques. In four age groups (E18-P2, P8-P12, P16-P20, > or = P28), unstimulated neurons showed a significant age-dependent increase in basal oxygen consumption (6.1 up to 10.2 nM/min/10(7) cells). The excitatory neurotransmitter glutamate induced a further, but age- and concentration-independent, elevation of oxygen consumption to a plateau > or = 14 nM/min/10(7) cells and a complete depolarization of mitochondrial membrane in neurons > or = P8. Stimulation using K+ (5-50 mM) effected a concentration- and age-dependent increase in oxygen consumption, but a similar nearby complete depolarization of mitochondrial membrane in all tested age groups. Furthermore, uncoupling mitochondrial membrane function followed by a complete depolarization of mitochondrial membrane showed a maximal oxygen consumption (14-15 nM/min/10(7) cells) only in neurons > or = P8. These data suggest that developing and adult cortical neurons cover their increased need of energy following stimulation by an efficiency improvement of mitochondrial oxidative phosphorylation. The age-independent limited capacity of mitochondrial oxidative phosphorylation, however, causes a reduction in cellular energy disposal in mature neurons and therefore may play a critical role in the increased sensitivity of adult neurons against excitotoxicity and ischaemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2005.04109.x | DOI Listing |
Nat Commun
January 2025
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
Aerobic and anaerobic organisms and their functions are spatially or temporally decoupled at scales ranging from individual cells to ecosystems and from minutes to hours. This is due to competition for energy substrates and/or biochemical incompatibility with oxygen (O). Here we report a chemolithotrophic Aquificales bacterium, Hydrogenobacter, isolated from a circumneutral hot spring in Yellowstone National Park (YNP) capable of simultaneous aerobic and anaerobic respiration when provided with hydrogen (H), elemental sulfur (S), and O.
View Article and Find Full Text PDFJ Phys Act Health
January 2025
Department of Physiotherapy, Faculty of Allied Medical Sciences, Middle East University, Amman, Jordan.
Background: Aerobic exercises (AEs) have gained much interest in managing fibromyalgia (FM). This trial aimed to find out how AEs affect women with FM in terms of lung function, chest expansion, dyspnea, exercise capacity, and quality of life.
Methods: Eighty FM-diagnosed women were allocated randomly into 2 equal-sized groups.
J Biol Chem
January 2025
Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin 132013, Jilin Province, China. Electronic address:
Gastric cancer (GC) remains a significant global health challenge, particularly due to the resistance of gastric cancer stem cells (GCSCs) to chemotherapy. This study investigates the role of heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), a member of the heterogeneous nuclear ribonucleoproteins (hnRNPs), in modulating mitochondrial metabolic reprogramming and contributing to chemoresistance in GCSCs. Through extensive analysis of tumor cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets, HNRNPA2B1 was identified as a key regulator in GCSCs, correlating with poor prognosis and enhanced resistance to chemoresistance.
View Article and Find Full Text PDFEnviron Technol
January 2025
Botany Discipline, School of Biological Sciences and Biotechnology, Goa University, Goa, India.
The dairy industry is a significant sector within the food industries, known for its high-water consumption and consequent generation of dairy wastewater (DWW), which is rich in pollutants like Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD). Improper disposal of DWW poses serious environmental challenges, including eutrophication and highlighting the need for sustainable biological treatment methods. This study investigates the potential of indigenous cyanobacterial strains , , , and for the bioremediation of DWW.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases. Although several chemotherapy regimens have been developed over the past decades, few targeted therapies have shown a significant improvement in overall survival, partly due to the identification of PDAC as a single disease.
Methods: Combining metabolomic analysis and immunohistochemistry staining with Oil Red O staining, analysis for the oxygen consumption rate and extracellular acidification rate, we stratified pancreatic cancer cells into two subtypes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!