We established an in vitro hepatocyte primary culture system from Oreochromis niloticus, a tropical fish species of great economical importance, and evaluated its ability to express albumin, a liver-specific protein, consistently for a period of 3 wk. Serum requirements for fish hepatocyte cultures were assessed. A one-step in situ perfusion of tilapia liver retrogradely followed by collagenase liver dissociation and subsequent washing produced nearly 90% homogenous viable hepatocytes, as shown by trypan blue exclusion test. Mixed primary monolayer and aggregate hepatocyte cultures achieved by 10% fetal calf serum medium supplements expressed consistent levels of albumin. The results of light and electron microscopy showed that the hepatocytes did not significantly proliferate (P<0.05) but remained viable for at least 3 wk. The results of this study show that in vitro cultures of mixed primary hepatocyte monolayers and aggregates established from Nile tilapia may be useful models for studying transient cellular stress induction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1290/0410068.1 | DOI Listing |
Food Sci Nutr
January 2025
Environmental and Life Sciences Programme, Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong Brunei Darussalam.
The latest strain of is an altered ecological adaptation for sustainable aquaculture and is necessary to sustain stocking density and reduce physiological stress of the new strain. The present study aimed to determine the optimum stocking density, biological performance, and economic efficiency of the Nile tilapia. The 14,000 healthy seeds and uniform weight (40 ± 2.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Geography and Environmental Studies, College of Natural and Applied Sciences, Sokoine University of Agriculture, P. O. Box 3038, Morogoro, Tanzania.
This study assessed the annual fish consumption among the households in Singida Municipality. This was due to the long-time of unsatisfactory pupil performance in joining secondary schools which may be linked to a lack of Long-chain omega-3 polyunsaturated fatty acids. The study used a questionnaire based on a random household consumer survey of 204 households.
View Article and Find Full Text PDFBMC Biol
January 2025
Faculty of Sciences, Centre for Environmental Sciences, Research Group Zoology: Biodiversity and Toxicology, UHasselt - Hasselt University, Diepenbeek, Belgium.
Background: Stress responses are key the survival of parasites and, consequently, also the evolutionary success of these organisms. Despite this importance, our understanding of the evolution of molecular pathways dealing with environmental stressors in parasitic animals remains limited. Here, we tested the link between adaptive evolution of parasite stress response genes and their ecological diversity and species richness.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
This study aimed to evaluate alternative in vivo treatment trials using natural products for ectoparasitic infestation on Nile tilapia; these two products were not previously used in the treatment of parasitic fish diseases. So, a total of 400 Oreochromis niloticus (O. niloticus) fish measured 10-15 cm in length; 350 from a fish farm in (Kafr Elsheikh and 50 from Nile River (Al Bahr Al Aazam), Egypt.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Aquatic Organisms Health Laboratory (AQUOS), Aquaculture Department, UFSC, Rodovia Admar Gonzaga 1346, 88037-000, Florianópolis, SC, Brazil. Electronic address:
The study aimed to assess the impact of dietary supplementation with tannic acid on the growth, health, and survival of Oreochromis niloticus following exposure to Aeromonas hydrophila. A total of 320 fish were divided into 16 tanks and assigned to four treatment groups: feed with 0.2 % tannic acid (TA), 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!