Biodegradation of p-nitrophenol (PNP), a priority pollutant, was studied as a model system for bioremediation of sites contaminated with nitroaromatic/organic compounds. Bioremediation of PNP-containing soil was first carried out in pots using immobilized and free cells of Arthrobacter protophormiae RKJ100 in order to ascertain the role of a suitable carrier material. Results showed that stability of the introduced strain was enhanced upon immobilization and that the rate of PNP depletion decreased with increasing depth of soil. Small-scale field studies (in one square meter plots) were then conducted in which PNP-contaminated soil from an agricultural field was bioaugmented with strain RKJ100 under natural environmental conditions. PNP was totally depleted in 5 days by immobilized cells, whereas free cells were able to deplete 75% of PNP in the same time period. The fate of the released strain as monitored by plate counts, hybridization studies, and real-time polymerase chain reaction revealed fairly stable population of the cells upon immobilization on corncob powder throughout the period of study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es0489801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!