Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The crystal structures of the hexamer duplex d(CGTACG)(2) complexed with the intercalating anthraquinone derivative 1,5-bis[3-(diethylamino)propionamido]anthracene-9,10-dione and the acridine derivative 9-acridinyl tetralysine have been solved at 2.0- and 1.4-A resolution, respectively. In both cases, the drugs adopt multiple orientations within a large DNA cavity constituted by two groups of four approximately coplanar bases. Cations play a pivotal role in the crystal structure. Both complexes crystallise in the presence of Co(2+), Ba(2+) and Na(+) ions. They reveal at least two different types of coordination environments: (1) specific sites for Co(2+) interacting with N7 of guanine; (2) a central ionic site formed by four phosphate groups, which can be occupied by different ions. One more ionic site that is not always occupied by ions is also visible in the electron density map. All of them play a role in the crystal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-005-0655-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!