The use of nonablative thermal energy to shrink soft-tissue collagen results in ultrastructural and mechanical changes at temperatures 60 degrees C or above. Due to this effect, the fibrils undergo shortening and shrinkage. Arthroscopic thermal capsulorrhaphy has been used in the treatment of shoulder instabilities and posterior impingement syndrome; in particular, the presence of a Bankart lesion or a superior labral anterior posterior lesion requires a labral or capsulolabral repair. Despite ease of application, thermal techniques have higher complication rates, with no proven superiority over traditional suture techniques. Further studies are required to develop the most appropriate technique for tissue shrinkage without any associated tissue destruction. The mechanical properties and long-term durability of the newly produced collagen need to be analyzed, as well.

Download full-text PDF

Source

Publication Analysis

Top Keywords

[thermal assisted
4
assisted arthroscopic
4
arthroscopic stabilization
4
stabilization unstable
4
unstable shoulder]
4
shoulder] nonablative
4
nonablative thermal
4
thermal energy
4
energy shrink
4
shrink soft-tissue
4

Similar Publications

Aim: This study evaluates long-term shear bond strength (SBS) and enamel micro cracks (MCs) healing after using adhesive pre-coated brackets (APC).

Materials And Methods: A total of eighty extracted human premolar teeth were randomly divided into four experimental groups ( = 20 per group): Control group: Teeth underwent indentation but no bracket bonding; group II : Teeth were subjected to indentation without exposure to thermocycling; group III: Teeth experienced both indentation and thermocycling; group IV: No indentation was applied to the teeth; groups III and IV were further divided into two subgroups to simulate different clinical timelines: Subgroup A (n = 10): Teeth underwent 5,000 thermocycles, equivalent to six months of clinical use. Subgroup B (n = 10): Teeth were subjected to 10,000 thermocycles, representing 12 months of use.

View Article and Find Full Text PDF

Mechanical and optical properties of additively manufactured denture base resin in different colors modified with antimicrobial substances: An in vitro study.

J Prosthet Dent

January 2025

Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH.

Statement Of Problem: Acrylic denture base resins are subject to colonization by oral and nonoral bacteria, contributing to the onset of denture stomatitis. However, how the addition of antimicrobial substances affects the mechanical and optical properties of additively manufactured denture base resin remains unclear.

Purpose: The purpose of this in vitro study was to investigate the surface roughness, color stainability, and flexural strength of antimicrobial-modified, additively manufactured polymethyl methacrylate (PMMA) denture base resin in tooth and gingiva colors.

View Article and Find Full Text PDF

Microwave-assisted extraction of pectin from Dillenia indica (DI) fruit was optimized using Box-Behnken design to maximize yield and quality. Parameters such as solid:solvent (1:10-1:30), microwave power (200-600 W), and extraction time (4-10 min) were varied to determine the optimal conditions. Through experimentation, the optimized extraction parameters were identified as 1:23.

View Article and Find Full Text PDF

The consumer demand for functional foods derived from natural sources has been enhanced due to health-promoting effects. Algae are widely available globally as a sustainable source of proteins, lipids, and carbohydrates. Algal lipids are underexplored natural sources that exhibit several nutraceutical effects and applications in fortification, cosmetics, and pharmaceuticals.

View Article and Find Full Text PDF

Objectives: This work highlights the methods used to develop a multi-pulse 1726 nm laser system combined with bulk air-cooling for selective sebaceous gland (SG) photothermolysis using thermal imaging and software algorithms. This approach enables treating to a desired tissue temperature and depth to provide a safe, effective, reproducible, and durable treatment of acne.

Methods: We designed and built a 1726 nm laser system with a 40 W maximum power output, a highly controlled air-cooling device, and a thermal camera in the handpiece, which permits real-time temperature monitoring of the epidermis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!