Intra-arterial thrombus visualized on T2* gradient echo imaging in acute ischemic stroke.

Cerebrovasc Dis

Department of Neuroradiology, CHU Lariboisière, Paris, France.

Published: September 2005

Background: MR signal loss related to arterial thrombosis leading to vascular susceptibility artifacts (VSA) has recently been reported on gradient echo images. The time course and sensitivity of VSA in acute stroke patients has been scarcely investigated. The aim of this study was to assess the frequency and course of VSA in acute stroke patients, to compare its sensitivity to distinct features of arterial occlusion as detected on FLAIR images or on CT scan.

Methods: Twenty-nine patients were scanned from 45 min to 6 h after stroke onset using identical MR parameters. All had an acute ischemic lesion identified on diffusion-weighted images, 25 had an occlusion of MCA or PCA confirmed by magnetic resonance angiography.

Results: VSA was detected in 22/25 patients having an occluded artery at the time of MRI examination. Flair disclosed a hyperintense vessel in all of these 25 cases, but CT scan revealed a hyperdense artery in only 15 cases. Follow-up studies showed that VSA can vanish or disappear after partial recanalization. When the artery remains occluded, VSA can decrease, disappear or increase in the next hours, possibly related to structural modifications of the thrombus with time. Most occlusions were due to cardiac and arterial emboli or to intracranial extension of carotid occlusion.

Conclusions: VSA are frequent in the first hours of MCA or PCA occlusion in acute stroke patients. The sensitivity of VSA appears lower than the arterial hyperintensity on FLAIR images but higher than the hyperdense artery sign on CT scan. The extent and intensity of VSA can change with recanalization or structural modifications of the thrombus.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000086120DOI Listing

Publication Analysis

Top Keywords

acute stroke
12
stroke patients
12
vsa
9
gradient echo
8
acute ischemic
8
sensitivity vsa
8
vsa acute
8
flair images
8
mca pca
8
hyperdense artery
8

Similar Publications

A NIRS-Based Technique for Monitoring Brain Tissue Oxygenation in Stroke Patients.

Sensors (Basel)

December 2024

Division of Neurological Rehabilitiation, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.

Stroke is a global health issue caused by reduced blood flow to the brain, which leads to severe motor disabilities. Measuring oxygen levels in the brain tissue is crucial for understanding the severity and evolution of stroke. While CT or fMRI scans are preferred for confirming a stroke due to their high sensitivity, Near-Infrared Spectroscopy (NIRS)-based systems could be an alternative for monitoring stroke evolution.

View Article and Find Full Text PDF

Swimmer's shoulder is a common condition among elite swimmers, often leading to pain and reduced performance. Fatigue can exacerbate this condition by affecting shoulder strength, proprioception, and range of motion, potentially increasing the risk of overuse injuries. This preliminary study aimed to evaluate the impact of physiotherapy treatment and the effects of fatigue on shoulder kinematics using inertial and magnetic measurement units (IMUs).

View Article and Find Full Text PDF

SPT-07A, a D-borneol, is currently being developed in China for the treatment of ischemic stroke. We aimed to create a whole-body physiologically-based pharmacokinetic (PBPK) model to predict the pharmacokinetics of SPT-07A in rats, dogs, and humans. The in vitro metabolism of SPT-07A was studied using hepatic, renal, and intestinal microsomes.

View Article and Find Full Text PDF

Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles.

Pharmaceutics

November 2024

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.

Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS.

View Article and Find Full Text PDF

Investigation into the Potential Mechanism of Radix Paeoniae Rubra Against Ischemic Stroke Based on Network Pharmacology.

Nutrients

December 2024

Department of Emergency Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610000, China.

Background: Radix Paeoniae Rubra (RPR), an edible and medicinal Traditional Chinese Medicine (TCM), is extensively employed in therapeutic interventions of cardiovascular and cerebrovascular diseases. However, the curative effect of RPR on ischemic stroke remains ambiguous. This work integrated network pharmacology, molecular docking, and experimental validation to explore the mechanisms of RPR in treating ischemic stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!