Weakly flocculated, thixotropic suspensions have been investigated by means of fast stress jump experiments. With a suitable procedure, reliable stress relaxation data could be collected starting 20 ms after cessation of flow. This technique has been used to determine the elastic and hydrodynamic contributions to the shear stress. Steady state as well as transient flows have been studied for suspensions containing either fumed silica or carbon black particles in a Newtonian medium. In both systems, the elastic stress totally dominates the response at low shear rates and consequently also the apparent yield stress. This stress contribution becomes negligibly small at high shear rates. The hydrodynamic contribution to the viscosity has finite limits at both the low and high shear rate ends. The data are relevant for testing rheological models. As an illustration, it is shown that the data agree qualitatively with the model proposed by Potanin et al. (J. Chem. Phys. 102 (14) (1995) 5845-5853).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2005.02.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!