Synthesis of silver nanoprisms in formamide.

J Colloid Interface Sci

Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.

Published: July 2005

Polygonal (mainly triangular) silver nanoprisms were prepared by reducing silver perchlorate in formamide in the presence of polyethylene glycol (PEG) at room temperature. The reduction of silver ions by formamide leads to the deposition of arrays of triangular shaped silver nanoparticles on the glass walls of the container, accompanied by evolution of CO2 gas. In the presence of poly(N-vinyl-2-pyrrolidone) (PVP) and PEG (1:1), both nanospheres and nanoprisms are formed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2005.02.017DOI Listing

Publication Analysis

Top Keywords

silver nanoprisms
8
synthesis silver
4
nanoprisms formamide
4
formamide polygonal
4
polygonal triangular
4
silver
4
triangular silver
4
nanoprisms prepared
4
prepared reducing
4
reducing silver
4

Similar Publications

In this work, surface-enhanced Raman scattering substrates with triangular silver nanoprisms (AgNPrs) dropped on copper hydroxide nanowires (CuOHNWs) were evaluated. AgNPrs were synthesized in colloidal solution using Ag nitrate, polyvinylpyrrolidone, trisodium citrate dihydrate, hydrogen peroxide, and sodium borohydride (NaBH). A set of five solutions with volume percentages from 0.

View Article and Find Full Text PDF

We report here on dual shape transformations of the same thermo-responsive hybrid hydrogel sheet under irradiation of a laser with two different wavelengths (808 nm and 450 nm). By etching the silver nanoprisms in the sheet to silver nanodiscs by using chloride ions (Cl), two areas with distinct light extinction properties are integrated in a single sheet. The conversion of photon energy to thermal energy in local areas by the silver nanoprisms or nanodiscs under laser irradiation with an appropriate wavelength heats up the sheet locally and causes a local volumetric shrinkage, and hence a volumetric mismatch in different areas in the sheet.

View Article and Find Full Text PDF

Shape symmetry breaking in the formation of inorganic nanostructures is of significant current interest. It was typically achieved through the growth of colloidal nanoparticles with adsorbed chiral molecules. Photochemical processes induced through asymmetric plasmon excitation by circularly polarized light in surface immobilized nanostructures also led to symmetry breaking.

View Article and Find Full Text PDF

Hyaluronic acid (HA) possesses unique viscoelastic properties and low immunogenicity, making it suitable for various biomedical purposes such as viscosupplementation in osteoarthritis treatment, assistance in eye surgery, and wound regeneration. The need for its quantification in human biofluids is crucial in clinical studies. This research work presents a novel approach using paper-based and parafilm-based photochemical techniques, employing triangular silver nanoprisms (TA-AgNPrs) as optical nanoprobes for HA detection in human biofluids.

View Article and Find Full Text PDF

Predictive understanding of factors affecting plasmon-exciton coupling is crucial for the successful realization of the exciting potentials of plexcitonic nanostructures. Here, we systematically investigate the role of plasmonic metals in controlling the plasmon-exciton coupling strength. We use gold and silver nanoprisms, having identical LSPR maxima, as the plasmonic components and form two plexciton hybrids with the J-aggregates of a cyanine dye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!