Genomic mitochondrial intron deletion occurs frequently during the reversion of mitochondrial intronic mutations in Saccharomyces cerevisiae. The multiplicity as well as the apparent polarity of intron deletion led us to propose the implication of reverse transcription in this process. The two first introns of the COX1 (cytochrome oxidase I) gene, ai1 and ai2, are known to be homologous to viral reverse transcriptase and to encode such activity. We have tested the involvement of these introns in the deletion process by constructing three isogenic strains. They contain the same reporter mutation in the second intron of the CYTb (cytochrome b) gene but differ from each other by the presence or the absence of the ai1 and/or ai2 introns in the other gene encoding the COX1 subunit. Only the strain lacking ai1 and ai2 introns is no more able to revert by intron deletion. The strain retaining only the ai1 intron was able to revert by intron deletion. We conclude that the reverse transcriptase activity, even when encoded by only ai1 intron, can act in trans in the intron deletion process, during the reversion of intronic mutations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.femsyr.2004.11.012DOI Listing

Publication Analysis

Top Keywords

intron deletion
20
reverse transcriptase
12
ai1 intron
12
intron
9
encoded ai1
8
intronic mutations
8
ai1 ai2
8
deletion process
8
ai2 introns
8
revert intron
8

Similar Publications

Introduction: The regulation of expression during T-cell development and immune responses is essential for proper lineage commitment and function in the periphery. However, the mechanisms of genetic and epigenetic regulation are complex, and their interplay not entirely understood. Previously, we demonstrated the need for CD4 upregulation during positive selection to ensure faithful commitment of MHC-II-restricted T cells to the CD4 lineage.

View Article and Find Full Text PDF

Double-strand breaks represent the most dangerous form of DNA damage, and in resting cells, these breaks are sealed via the non-homologous end joining (NHEJ) factor Ligase IV (LIG4). Excessive NHEJ may be genotoxic, necessitating multiple mechanisms to control NHEJ activity. However, a clear mechanism of transcriptional control for them has not yet been identified.

View Article and Find Full Text PDF

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Organisms have the capacity to detect day-night fluctuations through oscillators regulated by circadian clock genes, which are crucial for regulating various biological processes. Numerous studies have demonstrated a marked association between these genes and various growth traits of sheep. This study identified polymorphisms at 23 potential loci within five clock genes in four Chinese sheep breeds.

View Article and Find Full Text PDF

Personalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify patients with rare disease harbouring pathogenic genetic variants amenable to this therapeutic strategy will probably improve. Here we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!