The effect of tyrphostin AG-556 on intimal thickening in a mouse model of arterial injury.

Exp Mol Pathol

Department of Cardiology, Tel-Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, 6 Weizman Street, Tel Aviv University, Israel.

Published: June 2005

Background: Inflammation has been shown to play an important role in promoting the response to arterial injury and proinflammatory cytokines, such as tumor necrosis factor (TNF) alpha, are candidate mediators. AG-556 is a tyrosine kinase inhibitor proven to be effective in a model of multiple sclerosis-like syndrome in mice due to its immunomodulating effect. In the current study, we investigated the effect of the tyrphostin AG-556 on neointimal thickening and cytokine profile in a model of arterial injury in the mouse.

Methods: Injury was induced by external cuff placement on the left femoral artery of wild-type C57BL/6 mice. AG-556 dissolved in DMSO was injected intraperitoneally daily to the injured mice in a dosage of 2 mg/mouse. Control mice received DMSO injections. Histological analysis was carried out to assess neointimal formation. Splenocytes were cultured in the absence and presence of a mitogen for evaluation of thymidine incorporation and cytokine production.

Results: AG-556 treatment significantly attenuated intimal thickening (43,000+/-17,000 microm2; n=11) when compared to DMSO administration (286,000+/-127,000 microm2; n=10; P<0.05). Basal interferon-gamma production by splenocytes from AG-556-treated mice was increased by approximately 20-fold in comparison with levels in DMSO-treated animals, whereas Con-A induced secretion of the cytokine was similar between both groups. Levels of TNF-alpha, IL-4 and IL-10 in the culture supernatant from treated and non-treated animals did not differ significantly.

Conclusion: The tyrosine kinase inhibitor AG-556 may have a role in the reduction of intimal thickening. The effect could be mediated via an immune modulating effect involving a significant increase in the smooth muscle cell inhibitory cytokine IFN-gamma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2004.11.003DOI Listing

Publication Analysis

Top Keywords

arterial injury
12
tyrphostin ag-556
8
intimal thickening
8
model arterial
8
ag-556 intimal
4
thickening mouse
4
mouse model
4
injury
4
injury background
4
background inflammation
4

Similar Publications

Neuroinflammation immediately follows the onset of ischemic stroke in the middle cerebral artery. During this process, microglial cells are activated in and recruited to the penumbra. Microglial cells can be activated into two different phenotypes: M1, which can worsen brain injury; or M2, which can aid in long-term recovery.

View Article and Find Full Text PDF

Associations of Short-Term Ozone Exposure With Hypoxia and Arterial Stiffness.

J Am Coll Cardiol

January 2025

SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Research Station of Alpine Ecology Environment and Health at Tibet University, Lhasa, Tibet Autonomous Region, China. Electronic address:

Background: Epidemiological studies reported associations between ozone (O) exposure and cardiovascular diseases, yet the biological mechanisms remain underexplored. Hypoxia is a shared pathogenesis of O-associated diseases; therefore, we hypothesized that O exposure may induce changes in hypoxia-related markers, leading to adverse cardiovascular effects.

Objectives: This study aimed to investigate associations of short-term O exposure with hypoxic biomarkers and arterial stiffness.

View Article and Find Full Text PDF

Results of ICE-Guided Isolation of the Superior Vena Cava With Pulsed Field Ablation.

JACC Clin Electrophysiol

January 2025

Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, Texas, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, California, USA; Metro Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy. Electronic address:

Background: Earlier studies have documented the risk for sinoatrial node injury and phrenic nerve paralysis as complications following radiofrequency catheter ablation for electrical isolation of the superior vena cava (SVCI).

Objectives: The aim of this study was to assess the safety and feasibility of SVCI in patients with atrial fibrillation undergoing pulsed field ablation (PFA) METHODS: Six hundred sixteen consecutive patients undergoing PFA for pulmonary vein isolation plus SVCI were included in this multicenter analysis. Superior vena cava (SVC) ablation was performed under the continuous guidance of intracardiac echocardiography.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Introduction: Pelvic fractures often result in life-threatening bleeding and hemodynamic instability. Resuscitative endovascular balloon occlusion of the aorta (REBOA) has emerged as a promising strategy for patients with severe pelvic fractures, facilitating subsequent hemostatic interventions. Transcatheter arterial embolization (TAE) is a well-established procedure for managing pelvic fractures accompanied by hemorrhage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!