A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch. | LitMetric

Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.

Biochemistry

Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, USA.

Published: June 2005

Previous structural and biochemical data indicate a participation of the J-helix of Escherichia coli pol I in primer positioning at the polymerase and exonuclease sites. The J-helix contains three polar residues: N675, Q677, and N678. Preliminary characterization of alanine substitutions of these residues showed that only Q677A DNA polymerase has substantially decreased polymerase and increased exonuclease activity. The Q677A enzyme had approximately 2- and approximately 5-fold greater exonuclease activity than the wild type (WT) with mismatched and matched template-primers (TPs), respectively. N675A and N678A DNA polymerases did not differ significantly from the WT in these activities, despite the fact that both residues are seen to interact with the TP in various pol I-DNA complexes. Pre-steady-state kinetic measurements for the exonuclease activity of WT and mutant enzymes indicated nearly identical DNA binding affinity for ssDNA and mismatched TPs. However, with a matched TP, Q677A DNA polymerase exhibited increased exonuclease site affinity. The most important characteristic of Q677A DNA polymerase was its ability to continue cleavage into the matched region of the TP after mismatch excision, in contrast to the WT and other mutant enzymes. The increase in the exonuclease activity of Q677A DNA polymerase was further determined not to be solely due to the weakened binding at the polymerase site, by comparison with another polymerase-defective mutant enzyme, namely, R668A DNA polymerase. These enzymes have significantly decreased DNA binding affinity at the polymerase site, yet the exonuclease activity parameters of R668A DNA polymerase remain similar to those of the WT. These results strongly suggest that participation of Q677 is required for positioning the primer terminus (a) in the polymerase site for continued nucleotide addition and (b) in the 3'-exonuclease site for the controlled removal of mismatched nucleotides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi050140rDOI Listing

Publication Analysis

Top Keywords

dna polymerase
28
exonuclease activity
24
q677a dna
16
polymerase
12
polymerase site
12
dna
10
polar residues
8
exonuclease
8
escherichia coli
8
increased exonuclease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!