Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The caudal parts of the frontal eye fields (FEF) contain smooth-pursuit related neurons. Previous studies show that most FEF pursuit neurons carry visual signals in relation to frontal spot motion and discharge before the initiation of smooth-pursuit. It has also been demonstrated that most FEF pursuit neurons discharge during vergence tracking. Accurate vergence tracking requires information about target motion-in-depth. To further understand the role of the FEF in vergence tracking and to determine whether FEF pursuit neurons carry visual information about target motion-in-depth, we examined visual and vergence eye movement-related responses of FEF pursuit neurons to sinusoidal spot motion-in-depth. During vergence tracking, most FEF pursuit neurons exhibited both vergence eye position and velocity sensitivity. Phase shifts (re target velocity) of most neurons remained virtually constant up to 1.5 Hz. About half of FEF pursuit neurons exhibited visual responses to spot motion-in-depth. The preferred directions for visual responses of most neurons were similar to those during vergence tracking. Visual responses of most of these neurons exhibited sensitivity to the velocity of spot motion-in-depth. Phase shifts of most of the responding neurons remained virtually constant up to 2.0 Hz. Neurons that exhibited visual responses in-depth were mostly separate from neurons that showed visual responses in the frontal plane. To further examine whether FEF pursuit neurons could participate in initiation of vergence tracking, we examined latencies of neuronal responses with respect to vergence eye movements induced by step target motion-in-depth. About half of FEF pursuit neurons discharged before the onset of vergence eye movements with lead times longer than 20 ms. These results together with previous observations suggest that the caudal FEF carries visual signals appropriate to be converted into motor commands for pursuit in depth and frontal plane.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-004-2213-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!