Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1167554 | PMC |
http://dx.doi.org/10.1105/tpc.104.030577 | DOI Listing |
J Environ Manage
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China. Electronic address:
Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system.
View Article and Find Full Text PDFPlanta
January 2025
Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Belgrade, Serbia.
Two different strategies for the distribution of macro- and trace elements can be observed in the terrestrial orchid Gymnadenia conopsea. Most trace elements are not translocated to the above-ground parts, whereas for macro-elements the trend was reversed, with the highest accumulation in the distal parts of the plants. Edaphic stress is one of the main factors affecting plant fitness, but it is still poorly understood, even in rare plants such as orchids.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.
Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.
BMC Plant Biol
January 2025
The Institute of Plant Sciences and Genetics, Faculty of Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
Background: Plant breeding research heavily relies on wild species, which harbor valuable traits for modern agriculture. This work employed a new introgression population derived from Solanum pennellii (LA5240), a wild tomato native to Peru, composed of 1,900 genotyped backcross inbred lines (BILs_BC2S6) in the tomato inbreds LEA and TOP cultivated genetic backgrounds. This Peruvian accession was found resistant to the most threatening disease of tomatoes today, caused by the tobamovirus tomato brown rugose fruit virus (ToBRFV).
View Article and Find Full Text PDFPhotosynth Res
January 2025
School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Georgetown, Penang, Malaysia.
This study examined the impacts of different LED spectra on the growth of in vitro cultures of Musa acuminata cv. red banana and their biochemical profile, including the antioxidant enzymes catalase and ascorbate peroxidase, photosynthetic pigment and accumulation of total carbohydrate content. The far-red LEDs significantly increase shoot elongation (10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!