5-Lipoxygenase (5-LO) catalysis is positively regulated by Ca2+ ions and phospholipids that both act via the N-terminal C2-like domain of 5-LO. Previously, we have shown that 1-oleoyl-2-acetylglycerol (OAG) functions as an agonist for human polymorphonuclear leukocytes (PMNL) in stimulating 5-LO product formation. Here we have demonstrated that OAG directly stimulates 5-LO catalysis in vitro. In the absence of Ca2+ (chelated using EDTA), OAG strongly and concentration-dependently stimulated crude 5-LO in 100,000 x g supernatants as well as purified 5-LO enzyme from PMNL. Also, the monoglyceride 1-O-oleyl-rac-glycerol and 1,2-dioctanoyl-sn-glycerol were effective, whereas various phospholipids did not stimulate 5-LO. However, in the presence of Ca2+, OAG caused no stimulation of 5-LO. Also, phospholipids or cellular membranes abolished the effects of OAG. As found previously for Ca2+, OAG renders 5-LO activity resistant against inhibition by glutathione peroxidase activity, and this effect of OAG is reversed by phospholipids. Intriguingly, a 5-LO mutant lacking tryptophan residues (Trp-13, -75, and -102) important for the binding of the 5-LO C2-like domain to phospholipids was not stimulated by OAG. We conclude that OAG directly stimulates 5-LO by acting at a phospholipid binding site located within the C2-like domain.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M500068200DOI Listing

Publication Analysis

Top Keywords

c2-like domain
16
5-lo
12
oag
9
phospholipid binding
8
binding site
8
n-terminal c2-like
8
5-lo catalysis
8
oag directly
8
directly stimulates
8
stimulates 5-lo
8

Similar Publications

Introduction: Double C2-like domain beta (DOC2B) is a vesicle priming protein critical for glucose-stimulated insulin secretion in β-cells. Individuals with type 1 diabetes (T1D) have lower levels of DOC2B in their residual functional β-cell mass and platelets, a phenotype also observed in a mouse model of T1D. Thus, DOC2B levels could provide important information on β-cell dys(function).

View Article and Find Full Text PDF

PKC-related serine/threonine protein kinase N1 (PKN1) is a protease/lipid-activated protein kinase that acts downstream of the RhoA and Rac1 pathways. PKN1 comprises unique regulatory, hinge region, and PKC homologous catalytic domains. The regulatory domain harbors two homologous regions, i.

View Article and Find Full Text PDF

Lentiviral expression of calpain-1 C2-like domain peptide prevents glutamate-induced cell death in mouse hippocampal neuronal HT22 cells.

In Vitro Cell Dev Biol Anim

April 2022

Department of Biological Science, Graduate School of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate, 020-8551, Japan.

Glutamate neurotoxicity is involved in neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Excess glutamate causes caspase-independent programmed cell death via oxidative stress and calcium influx. Our previous study showed that calpain-1 localizes to both the cytoplasm and mitochondria, where apoptosis-inducing factor (AIF) is cleaved by calpain-1 and translocates to the nucleus to induce DNA fragmentation.

View Article and Find Full Text PDF

The redundancy and diversity between two novel PKC isotypes that regulate learning in .

Proc Natl Acad Sci U S A

January 2022

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan

The nematode learns the concentration of NaCl and moves toward the previously experienced concentration. In this behavior, the history of NaCl concentration change is reflected in the level of diacylglycerol and the activity of protein kinase C, PKC-1, in the gustatory sensory neuron ASER and determines the direction of migration. Here, through a genetic screen, we found that the activation of Gq protein compensates for the behavioral defect of the loss-of-function mutant of We found that Gq activation results in hyperproduction of diacylglycerol in ASER sensory neuron, which leads to recruitment of TPA-1, an nPKC isotype closely related to PKC-1.

View Article and Find Full Text PDF

When nuclear membranes are stretched, the peripheral membrane enzyme cytosolic phospholipase A2 (cPLA) binds via its calcium-dependent C2 domain (cPLA-C2) and initiates bioactive lipid signaling and tissue inflammation. More than 150 C2-like domains are encoded in vertebrate genomes. How many of them are mechanosensors and quantitative relationships between tension and membrane recruitment remain unexplored, leaving a knowledge gap in the mechanotransduction field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!