Differences in gene expression patterns between adult and postnatal day 7 (P7) mouse cerebellum, at the peak of granule neuron migration, were analyzed by hybridization to the GLYCOv2 glycogene array. This custom designed oligonucleotide array focuses on glycosyl transferases, carbohydrate-binding proteins, proteoglycans and related genes, and 173 genes were identified as being differentially expressed with statistical confidence. Expression levels for 11 of these genes were compared by RT-PCR, and their differential expression between P7 and adult cerebellum confirmed. Within the group of genes showing differential expression, the sialyltransferases (SiaTs) and GalNAc-Ts that were elevated at P7 prefer glycoprotein substrates, whilst the SiaTs and GalNAc-Ts that were elevated in the adult preferentially modify glycolipids, consistent with a role for gangliosides in maintaining neuronal function in the adult. Also within this group, three proteoglycans--versican, bamacan and glypican-2--were elevated at P7, along with growth factor midkine, which is known to bind to multiple types of proteoglycans, and fibroblast growth factor receptor 1, whose activity is known to be influenced by heparan sulfate proteoglycans. Two sulfotransferases that can modify the extent of proteoglycan sulfation were also differentially regulated, and may modify the interaction of a subset of proteoglycans with their binding partners during cerebellar development. Bamacan, glypican-2 and midkine were shown to be expressed in different cell types, and their roles in cerebellar development during granule neuron migration and maturation are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.modgep.2005.04.006 | DOI Listing |
Neuroimage Rep
December 2024
Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA.
Background: Severe neonatal inflammatory conditions in very preterm infants (VPT: <32 weeks gestational age, GA) are linked to adverse neurodevelopmental outcomes. Differences in white matter (WM) microstructure of the corpus callosum (CC) have been observed at age 6 in VPT children with a history of severe neonatal inflammation. The goal of this study was to determine whether these CC differences can be detected at term-equivalent age using diffusion MRI (dMRI), and whether neonatal inflammation is associated with altered WM in additional tracts implicated in the encephalopathy of prematurity.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
January 2025
Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
Purpose Of Review: Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias.
View Article and Find Full Text PDFNeural Regen Res
January 2025
Genome Dynamics and Function, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein-protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions.
View Article and Find Full Text PDFPsychiatry Clin Neurosci
January 2025
Department of Radiology, and Functional and Molecular Imaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
Aim: As a central component of schizophrenia psychopathology, negative symptoms result in detrimental effects on long-term functional prognosis. However, the neurobiological mechanism underlying negative symptoms remains poorly understood, which limits the development of novel treatment interventions. This study aimed to identify the specific neural fingerprints of negative symptoms in schizophrenia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!