Strength and reliability of four-unit all-ceramic posterior bridges.

Dent Mater

Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Center for Dental and Oral Medicine, University of Zurich, Plattenstrasse 11, CH-8028 Zurich, Switzerland.

Published: October 2005

Objectives: The purpose of this study was to determine the in vitro load bearing capacity of four-unit posterior frameworks made of glass ceramic with lithium-disilicate crystals (E2), of zirconia-reinforced glass-infiltrated alumina (ICZ) and of zirconia stabilized with 3 mol% yttria (CEZ).

Methods: All frameworks mimicked a four-unit posterior situation with 7.3 mm2 interdental cross-sections and possessed exactly the same dimensions. The load bearing capacity was measured on a special bridge test setup with 15 specimens for each of the materials. The data were analyzed with Weibull statistics giving the characteristic load bearing capacity F0 at 63% failure probability and the Weibull modulus m as indicator for the reliability and reproducibility.

Results: For the E2 frameworks the average load bearing capacity and the SD was 260 (+/-53) N, the characteristic load F0 282 N and the reliability m = 5.7. For the ICZ frameworks the average load bearing capacity was 470 (+/-101) N, F0 518 N and m = 4.5. CEZ frameworks revealed the highest average load bearing capacity of 706 (+/-123) N, the highest characteristic load bearing capacity F0 = 755 N and the best reliability m = 7.0.

Significance: CEZ frameworks showed the best mechanical properties as demonstrated by the high values of average load bearing capacity, reliability and characteristic load bearing capacity with respect to the other ceramics studied. However, for four-unit posterior CEZ frameworks the connector size of 7.3 mm2 is insufficient to withstand occlusal forces reported in the literature. Four-unit posterior frameworks require a connector size larger than 7.3 mm2.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2004.11.012DOI Listing

Publication Analysis

Top Keywords

load bearing
36
bearing capacity
36
four-unit posterior
16
characteristic load
16
average load
16
cez frameworks
12
load
10
bearing
9
capacity
9
frameworks
8

Similar Publications

Objective: The aim of this study was to evaluate whether the locking femoral neck plate (LFNP) can be an alternative fixation method to the cannulated screws with a medial buttress plate. For this purpose, we compared biomechanically the LFNP and cannulated screws with or without a medial buttress plate in Pauwels type 3 femoral neck fractures.

Methods: A vertical fracture model was created at an 80-degree angle to the femoral neck in 28 synthetic bone models.

View Article and Find Full Text PDF

This study investigates the performance of a skirt sand pile (SSP) system beneath a circular shallow footing using three-dimensional finite element analysis calibrated against a large-scale experimental setup. The SSP, measuring 8.00 m in length and 1.

View Article and Find Full Text PDF

Oriented Cortical-Bone-Like Silk Protein Lamellae Effectively Repair Large Segmental Bone Defects in Pigs.

Adv Mater

January 2025

Institute of Applied Bioresource Research, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.

Assembling natural proteins into large, strong, bone-mimetic scaffolds for repairing bone defects in large-animal load-bearing sites remain elusive. Here this challenge is tackled by assembling pure silk fibroin (SF) into 3D scaffolds with cortical-bone-like lamellae, superior strength, and biodegradability through freeze-casting. The unique lamellae promote the attachment, migration, and proliferation of tissue-regenerative cells (e.

View Article and Find Full Text PDF

Background: Transfemoral osseointegrated prostheses, like other uncemented prostheses experience the risk of aseptic loosening and post-operative periprosthetic fractures, with an incidence between 3% and 30%. To date, however, osseointegrated off-the-shelf prostheses are manufactured in a limited number of sizes, and some patients do not meet the strict eligibility criteria of commercial devices. A customized osseointegrated stem was developed and a pre-clinical in vitro investigation of the stem was performed, to evaluate its biomechanical performance.

View Article and Find Full Text PDF

[Treatment with TOPS for short femoral stump].

Oper Orthop Traumatol

January 2025

Klinik für Unfall‑, Hand und Wiederherstellungschirurgie, Universitätsmedizin Rostock, Schillingallee 35, 18057, Rostock, Deutschland.

Objective: Treatment with transcutaneous osseointegrated prosthesis systems (TOPS) for short femoral amputation stumps aims to restore independent walking ability after proximal femoral amputation by direct bone-guided prosthesis anchorage. This cannot be safely achieved with conventional socket prostheses due to the mechanically inadequate socket contact surface.

Indications: Treatment of patients with short transfemoral stumps who cannot be mobilized sufficiently with conventional socket prostheses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!