Previously, we localized the beta2 interacting portion of the catalytic subunit (alpha) of DNA polymerase III to the C-terminal half, downstream of the polymerase active site. Since then, two different beta2 binding sites within this region have been proposed. An internal site includes amino acid residues 920-924 (QADMF) and an extreme C-terminal site includes amino acid residues 1154-1159 (QVELEF). To permit determination of their relative contributions, we made mutations in both sites and evaluated the biochemical, genetic, and protein binding properties of the mutant alpha subunits. All purified mutant alpha subunits retained near wild-type polymerase function, which was measured in non-processive gap-filling assays. Mutations in the internal site abolished the ability of mutant alpha subunits to participate in processive synthesis. Replacement of the five-residue internal sequence with AAAKK eliminated detectable binding to beta2. In addition, mutation of residues required for beta2 binding abolished the ability of the resulting polymerase to participate in chromosomal replication in vivo. In contrast, mutations in the C-terminal site exhibited near wild-type phenotypes. alpha Subunits with the C-terminal site completely removed could participate in processive DNA replication, could bind beta2, and, if induced to high level expression, could complement a temperature-sensitive conditional lethal dnaE mutation. C-terminal defects that only partially complemented correlated with a defect in binding to tau, not beta2. A C-terminal deletion only reduced beta2 binding fourfold; tau binding was decreased ca 400-fold. The context in which the beta2 binding site was presented made an enormous difference. Replacement of the internal site with a consensus beta2 binding sequence increased the affinity of the resulting alpha for beta2 over 100-fold, whereas the same modification at the C-terminal site did not significantly increase binding. The implications of multiple interactions between a replicase and its processivity factor, including applications to polymerase cycling and interchange with other polymerases and factors at the replication fork, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2005.04.065DOI Listing

Publication Analysis

Top Keywords

beta2 binding
20
c-terminal site
16
alpha subunits
16
internal site
12
mutant alpha
12
binding
11
site
10
beta2
10
binding site
8
dna polymerase
8

Similar Publications

Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome, however the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh-/-) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh-/- mice using rose bengal and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh-/- mice in the absence and presence of β2GPI.

View Article and Find Full Text PDF

Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.

View Article and Find Full Text PDF

We present a novel, highly customizable glutathione-responsive nanogel (NG) platform for efficient mRNA delivery with precise mRNA payload release control. Optimization of various cationic monomers, including newly synthesized cationic polyarginine, polyhistidine, and acrylated guanidine monomers, allowed fine-tuning of NG properties for mRNA binding. By incorporating a poly(ethylene) glycol-based disulphide crosslinker, we achieved glutathione-triggered mRNA release, enabling targeted intracellular delivery.

View Article and Find Full Text PDF

Enhanced effect of the immunosuppressive soluble HLA-G2 homodimer by site-specific PEGylation.

Sci Rep

January 2025

Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan.

Human leukocyte antigen (HLA)-G is a nonclassical HLA class I molecule that has an immunosuppressive effect mediated by binding to immune inhibitory leukocyte immunoglobulin-like receptors (LILR) B1 and LILRB2. A conventional HLA-G isoform, HLA-G1, forms a heterotrimeric complex composed of a heavy chain (α1-α3 domains), β2-microglobulin (β2m) and a cognate peptide. One of the other isoforms, HLA-G2, lacks a α2 domain or β2m to form a nondisulfide-linked homodimer, and its ectodomain specifically binds to LILRB2 expressed in human monocytes, macrophages, and dendritic cells.

View Article and Find Full Text PDF

Background: Neutrophils are the most abundant leukocytes in human blood, and their recruitment is essential for innate immunity and inflammatory responses. The initial and critical step of neutrophil recruitment is their adhesion to vascular endothelium, which depends on G protein-coupled receptor (GPCR) triggered integrin inside-out signaling that induces β2 integrin activation and clustering on neutrophils. Kindlin-3 and talin-1 are essential regulators for the inside-out signaling induced β2 integrin activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!