Phenylketonuria (PKU) is a metabolic disorder due primarily to mutations in the PAH gene that impair both phenylalanine hydroxylase activity and disposal of l-phenylalanine from the normal diet. Excess phenylalanine is toxic to cognitive development and a low-phenylalanine diet prevents mental retardation, but it is a difficult therapeutic option. Previous studies with recombinant phenylalanine ammonia-lyase, PAL, demonstrated pharmacologic and physiologic proofs of principle for PAL as an alternative therapy for PKU but its immunogenicity was problematic. From a series of formulations of linear and branched polyethylene glycols chemically conjugated to PAL, we have created a parenteral therapeutic agent for PKU treatment. All the pegylated molecules were fully characterized in vitro and the most promising formulations were then tested in vivo in the PKU mouse model. The linear 20-kDa PEG-PAL combination abolished in vivo immunogenicity after repeated challenge while retaining full catabolic activity against phenylalanine, suggesting potential as a novel PKU therapeutic.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2005.02.013DOI Listing

Publication Analysis

Top Keywords

phenylalanine ammonia-lyase
8
phenylalanine
5
pku
5
development pegylated
4
pegylated forms
4
forms recombinant
4
recombinant rhodosporidium
4
rhodosporidium toruloides
4
toruloides phenylalanine
4
ammonia-lyase treatment
4

Similar Publications

Crop plants are severely affected by heavy metals (HMs), leading to food scarcity and economical loss. Lead (Pb) is outsourced by use of lead-based fertilizers, batteries, mining, smelting and metal processing. It significantly reduces growth, development and yield of crops cultivated on contaminated sites.

View Article and Find Full Text PDF

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Bacillus endophytes for sustainable management of tomato spotted wilt virus and yield production.

Pest Manag Sci

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.

Background: Tomato-spotted wilt virus (TSWV) from the Tospovirus genus affects over 1000 plant species, including key crops, and traditional control methods often prove inadequate. This study investigates the effectiveness of Bacillus amyloliquefaciens and Bacillus subtilis in reducing TSWV infection, enhancing plant growth, and strengthening defense in Nicotiana benthamiana. The aim is to assess Bacillus as a sustainable biocontrol alternative, offering an eco-friendly solution for managing TSWV disease in agriculture.

View Article and Find Full Text PDF

Innovative auxin-micronutrient based nanocomposites (IAA-FeONPs and IAA-MnONPs) shield strawberry plants from lead toxicity.

Plant Physiol Biochem

December 2024

Department of Pomology, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt; Biology Research & Studies Institute, Assiut University, Assiut, 71526, Egypt. Electronic address:

Smart nanohybrid technology with potential advantages to plants has recently been developed formanaging the widespread pollution of heavy metals. Herein, we disclose a novel strategy to combat Pb stress in strawberry (Fragaria spp. cv.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungus and Pseudomonas bacteria affect tomato response to Tuta absoluta (Lepidoptera: Gelechiidae) herbivory.

BMC Plant Biol

December 2024

State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.

Tuta absoluta (Lepidoptera: Gelechiidae) is one of the most significant invasive and destructive pests worldwide, causing serious economic losses to the tomato industry. Rhizosphere microorganism, such as arbuscular mycorrhizal fungi (AMF) and Pseudomonas bacteria, can interact with plants individually or collectively to improve plant growth and resistance to pests and disease. However, the effects of AMF, Pseudomonas, and their interactions on plant responses to insect herbivores remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!