Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells.

Exp Cell Res

Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.

Published: July 2005

Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2005.02.025DOI Listing

Publication Analysis

Top Keywords

transcription-permissive nuclear
12
nuclear compartments
12
human cells
8
expressed genes
8
nuclear
5
human
5
telomere-surrounding regions
4
regions transcription-permissive
4
compartments
4
compartments human
4

Similar Publications

Loss of Angelman Syndrome Protein E6AP Disrupts a Novel Antagonistic Estrogen-Retinoic Acid Transcriptional Crosstalk in Neurons.

Mol Neurobiol

September 2018

Department of Biochemistry and Molecular Biology, Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Gautier Building, Room 314 (R629), 1011 NW 15th Street, Miami, FL, 33136, USA.

Angelman syndrome (AS) is a complex genetic disorder that affects the nervous system. AS affects an estimated 1 in 12,000 to 20,000 individuals. Characteristic features of AS includes developmental delay or intellectual disability, severe speech impairment, seizures, small head size (microcephaly), and problems with movement and balance (ataxia).

View Article and Find Full Text PDF

Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination.

View Article and Find Full Text PDF

The clinical symptomatology in the X-linked Wiskott-Aldrich syndrome (WAS), a combined immunodeficiency and autoimmune disease resulting from WAS protein (WASp) deficiency, reflects the underlying coexistence of an impaired T helper 1 (TH1) immunity alongside intact TH2 immunity. This suggests a role for WASp in patterning T(H) subtype immunity, yet the molecular basis for the TH1-TH2 imbalance in human WAS is unknown. We have discovered a nuclear role for WASp in the transcriptional regulation of the TH1 regulator gene TBX21 at the chromatin level.

View Article and Find Full Text PDF

Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells.

Exp Cell Res

July 2005

Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.

Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!