Thermodynamically stable vesicle (L(alpha1)) formation from glycolipid biosurfactant sponge phase (L(3)) and its mechanism were investigated using a "natural" biocompatible mannosyl-erythritol lipid-A (MEL-A)/L-alpha-dilauroylphosphatidylcholine (DLPC) mixture by varying the composition. The trapping efficiency for calcein and turbidity measurements clearly indicated the existence of three regions: while the trapping efficiencies of the mixed MEL-A/DLPC assemblies at the compositions with X(DLPC)< or =0.1 or X(DLPC)> or =0.8 were almost zero, the mixed assemblies at the compositions with 0.1 or =0.8 were multilamellar vesicles (L(alpha)) with diameter from 2 to 10 microm. Meanwhile, dynamic light scattering (DLS) measurement revealed that the average size of the vesicles at the composition of X(DLPC)=0.3 was 633.2 nm, which is remarkably small compared to other compositions. Moreover, the mixed vesicle solution at the composition of X(DLPC)=0.3 was slightly bluish and turbid and kept its dispersion stability at 25 degrees C for more than 3 months, indicating the formation of a thermodynamically stable vesicle (L(alpha1)). These results exhibited the formation of a thermodynamically stable vesicle (L(alpha1)) with a high dispersibility from the MEL-A/DLPC mixture. The asymmetric distribution of MEL-A and DLPC in the two vesicle monolayers caused by the difference in geometrical structures is very likely to have changed their self-assembled structure from a sponge phase (L(3)) to a thermodynamically stable vesicle (L(alpha1)).
Publication Analysis
Top Keywords
thermodynamically stable
8
glycolipid biosurfactant
8
assemblies compositions
8
phase thermodynamically
4