Background/aims: Hepatitis B virus (HBV) preferentially replicates in quiescent cells. It was analyzed whether HBV affects cell cycle control.
Methods: The amount of EGF-receptor (EGFR) and the binding capacity for 125I-EGF was determined. Expression of mdm2 and p21 and relevance of p53 for it were analyzed by reporter gene assays and western blotting. Cyclin A/E associated cdk2 activities were determined by immunocomplex assays. Cell proliferation was quantified by measurement of BrdU incorporation.
Results: In HBV producing cells a significant reduction of EGFR expression, diminished 125I-EGF-binding capacity and insensitivity to EGF-stimulation were observed as compared to the control. Moreover, c-Raf-1-dependent induction of mdm2-P2 and p21cip1/waf1-promoter and elevated amounts of the respective proteins were observed in HBV producing cells. Whereas activation of mdm2-P2-promoter requires p53, activation of p21cip1/waf1-promoter is mediated partially by a p53-independent process. Induction of p21cip1/waf1 is reflected by a reduction of cyclin A associated cdk2 activity and an increase of cyclin E associated cdk2 activity. In accordance with this proliferation rate of HBV-producing hepatocytes is reduced as compared to control cells.
Conclusions: These results describe novel cell-cycle inhibitory functions of HBV that correlate well with the general concept of enhanced HBV replication in quiescent cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhep.2005.02.026 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFProtein Expr Purif
January 2025
Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. Electronic address:
E6AP/UBE3A is the founding member of the HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin E3 ligase family, which add ubiquitin post-translationally to protein substrates. E6AP has been structurally defined in complex with human papillomavirus (HPV) oncoprotein E6 and its gain-of-function substrate tumor suppressor p53; however, there is currently no report of E6AP being expressed and purified from mammalian cells, as studies to date have isolated E6AP from E. coli or insect cells.
View Article and Find Full Text PDFVaccine
January 2025
Vaxine Pty Ltd, Warradale, Adelaide, SA 5046, Australia; Australian Respiratory and Sleep Medicine Institute Ltd, Adelaide, SA 5042, Australia. Electronic address:
There is a need to improve the effectiveness of seasonal influenza vaccines. Influenza vaccines based on recombinant hemagglutinin offer advantages over traditional approaches. We asked whether Advax-CpG55.
View Article and Find Full Text PDFEnzyme Microb Technol
January 2025
Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China.
2-Phenylethanol, an aromatic alcohol with a rose scent, is widely used in the cosmetics, food, and pharmaceutical industries. We designed an efficient multi-enzyme cascade pathway for production of 2-phenylethanol from styrene as the substrate. Initially, 2-phenylethanol was produced by overexpression of styrene monooxygenase A (styA), styrene monooxygenase B (styB), styrene oxide isomerase (SOI), alcohol dehydrogenase (yahK), and glucose dehydrogenase (gdh) in Escherichia coli to give 6.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!