Full activation of T cells requires the binding of antigen to the T cell receptor and stimulation of the CD28 molecule, a process which typically occurs when T cells bind to an antigen presenting cell. The transcription factor, NF-kappaB, is an integration point for these two signals and its activation is critical for T cell function. Using antibodies to the TCR and CD28 molecules to activate Jurkat T cells, we show that cells that were permitted to aggregate into multi-cellular clusters increased NF-kappaB activity compared to unclustered cells. Inhibition of PI3K signaling with wortmannin decreased the clustering-mediated NF-kappaB signal. Over-expression of a dominant negative form of Cbl-b, an endogenous inhibitor of PI3K, in unclustered cells rescued NF-kappaB activation to the same levels caused by cell clustering. Inhibiting signaling through Rho with dominant negative RhoA abrogated both clustering-mediated and dominant negative Cbl-b-mediated NF-kappaB inactivation, but not TCR/CD28 mediated NF-kappaB activation. Taken together, these results suggest that in addition to pathways stimulated by classical T cell-APC interactions, another signal arising from T cell clustering can enhance activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2005.05.064DOI Listing

Publication Analysis

Top Keywords

cell clustering
12
dominant negative
12
nf-kappab activity
8
unclustered cells
8
nf-kappab activation
8
nf-kappab
7
cells
6
activation
5
cell
5
cell-to-t cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!