To investigate the function of glutathione peroxidase (GPX) in plants, we produced transgenic tomato plants overexpressing an eukaryotic selenium-independent GPX (GPX5). We show here that total GPX activity was increased by 50% in transgenic plants, when compared to control plants transformed with the binary vector without the insert (PZP111). A preliminary two-dimensional electrophoretic protein analysis of the GPX overexpressing plants showed notably a decrease in the accumulation of proteins identified as rubisco small subunit 1 and fructose-1,6-bisphosphate aldolase, two proteins involved in photosynthesis. These observations, together with the fact that in standard culture conditions, GPX-overexpressing plants were not phenotypically distinct from control plants prompted us to challenge the plants with a chilling treatment that is known to affect photosynthesis activity. We found that upon chilling treatment with low light level, photosynthesis was not affected in GPX-overexpressing plants while it was in control plants, as revealed by chlorophyll fluorescence parameters and fructose-1,6-biphosphatase activity. These results suggest that overexpression of a selenium-independent GPX in tomato plants modifies specifically gene expression and leads to modifications of photosynthetic regulation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2005.04.018DOI Listing

Publication Analysis

Top Keywords

control plants
12
plants
11
photosynthetic regulation
8
glutathione peroxidase
8
tomato plants
8
selenium-independent gpx
8
gpx-overexpressing plants
8
chilling treatment
8
gpx
5
modification photosynthetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!