Interpreting computational neural network QSAR models: a measure of descriptor importance.

J Chem Inf Model

Chemistry Department, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: October 2005

We present a method to measure the relative importance of the descriptors present in a QSAR model developed with a computational neural network (CNN). The approach is based on a sensitivity analysis of the descriptors. We tested the method on three published data sets for which linear and CNN models were previously built. The original work reported interpretations for the linear models, and we compare the results of the new method to the importance of descriptors in the linear models as described by a PLS technique. The results indicate that the proposed method is able to rank descriptors such that important descriptors in the CNN model correspond to the important descriptors in the linear model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci050022aDOI Listing

Publication Analysis

Top Keywords

computational neural
8
neural network
8
linear models
8
descriptors linear
8
descriptors
6
interpreting computational
4
network qsar
4
models
4
qsar models
4
models measure
4

Similar Publications

Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.

View Article and Find Full Text PDF

An automatic cervical cell classification model based on improved DenseNet121.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.

View Article and Find Full Text PDF

This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.

View Article and Find Full Text PDF

The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.

View Article and Find Full Text PDF

Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing, China.

Compute-in-memory based on resistive random-access memory has emerged as a promising technology for accelerating neural networks on edge devices. It can reduce frequent data transfers and improve energy efficiency. However, the nonvolatile nature of resistive memory raises concerns that stored weights can be easily extracted during computation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!