[Ultrasensitive immunoassay of hormones].

Nihon Naibunpi Gakkai Zasshi

Department of Biochemistry, Medical College of Miyazaki.

Published: February 1992

Two methods for ultrasensitive immunoassay of peptide hormones are presented. One is to reduce the nonspecific binding of labeled reactants in two-site immunoassay by transfer of immune complexes containing labeled reactants from one solid phase to another. The other is a novel noncompetitive immunoassay method for small peptides, in which peptides are biotinylated and subsequently measured by two-site assay using anti-peptide antibody and avidin (streptavidin).

Download full-text PDF

Source
http://dx.doi.org/10.1507/endocrine1927.68.2_63DOI Listing

Publication Analysis

Top Keywords

labeled reactants
8
[ultrasensitive immunoassay
4
immunoassay hormones]
4
hormones] methods
4
methods ultrasensitive
4
ultrasensitive immunoassay
4
immunoassay peptide
4
peptide hormones
4
hormones presented
4
presented reduce
4

Similar Publications

Background And Aim: In animal husbandry, antibiotics are frequently used as growth promoters, as well as for illness prevention and treatment. They are considered important toxic and allergenic contaminants of food and a serious risk factor for the spread of antibiotic resistance. National and international regulatory authorities have established limits on the permissible residue of antibiotics in food.

View Article and Find Full Text PDF

Potential-resolved electrochemiluminescent immunoassay based on dual co-reactants regulation.

Biosens Bioelectron

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:

Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.

View Article and Find Full Text PDF

Conventional solid/liquid electrochemical interfaces typically encounter challenges with impeded mass transport for poor electrochemical quantification due to the intricate pathways of reactants from the bulk solution. To address this issue, this work reports an innovative approach integrating a target-activated DNA framework nanomachine with electrochemically driven metal-organic framework (MOF) conversion for self-sacrificial biosensing. The presence of the target biomarker serotonin initiates the DNA framework nanomachine by an entropy-driven circuit to form a cross-linked nanostructure and subsequently release the Fe-MOF probe.

View Article and Find Full Text PDF

A Rh(III)-catalyzed sequential C-H bond addition to dienes and in situ formed aldimines was developed, allowing for the preparation of otherwise challenging to access amines with quaternary centers at the -position. A broad range of dienes were effective inputs and installed a variety of aryl and alkyl substituents at the quaternary carbon site. Aryl and alkyl sulfonamide and carbamate nitrogen substituents were incorporated by using different formaldimine precursors.

View Article and Find Full Text PDF

The stereochemistry of the uncatalyzed chlorolactonization of 4-phenylpent-4-enoic acid at room temperature was examined to probe the reaction's intrinsic diastereoselectivities as a function of chlorenium ion donor, solvent polarity, and reactant concentration ranges. Kinetic studies using Variable Time Normalization Analysis (VTNA) revealed differing reaction orders for the syn and anti alkene addition processes. Aided and illustrated by quantum chemical modeling, this detailed mechanistic analysis of the substrate's intrinsic chlorolactonization reactions points to concerted Ad3-type paths for both syn and anti additions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!