Methane (CH4) emission from a natural wetland of northern China.

J Environ Sci Health A Tox Hazard Subst Environ Eng

Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.

Published: July 2005

This article focuses on the seasonal and spatial changes of CH4 emission from the natural reed marsh of Liaohe Delta, China. Field experiments showed that this natural wetland acts as a CH4 sink in spring (-30 approximately -1000 microg/m2 x h), a strong source in summer (400-3000 microg/m2 x h) and a weak source in autumn (< 400 microg/m2 x h). Reed plants play an important role in transportation and emission of methane produced in soil. According to our field measurement data, CH4 emission is positively related to temperature, and negatively related to Eh value and water depth. The activity of methanogenic bacteria is higher in the rhizosphere and surface layer, and thus contributes more in CH4 emission than other layers.

Download full-text PDF

Source
http://dx.doi.org/10.1081/ese-200055666DOI Listing

Publication Analysis

Top Keywords

ch4 emission
16
emission natural
8
natural wetland
8
emission
5
methane ch4
4
wetland northern
4
northern china
4
china article
4
article focuses
4
focuses seasonal
4

Similar Publications

Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).

View Article and Find Full Text PDF

Recycled calcium polypeptides modulate microbial dynamics and enhance bioconversion in kitchen waste-garden waste co-composting system.

J Environ Manage

December 2024

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

The kitchen waste and garden waste (KW-GW) co-composting system provides an effective method for recycling these two types of municipal solid waste; however, further improvements are needed to enhance bioconversion performance. This study investigates a novel composting additive, calcium polypeptides (CPPs), derived from waste animal and plant proteins, which can enhance the bioconversion capacity of biomass in the KW-GW co-composting system. As a pH regulator and an available nitrogen source, CPPs significantly increase the compost matrix pH, prolong the thermophilic phase, and reduce emissions of exhaust gases such as CH, NO, NH, and HS by 52.

View Article and Find Full Text PDF

Elevated CO and goethite inhibited anaerobic oxidation of methane in paddy soils.

J Environ Manage

December 2024

College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.

Microbially mediated anaerobic oxidation of methane (AOM) regulates methane (CH) fluxes. Increases in the global atmospheric carbon dioxide (CO) concentration and iron oxide rich in paddy soils influence AOM. However, the response and mechanisms between these two processes and AOM remain unclear.

View Article and Find Full Text PDF

Horizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH) and nitrous oxide (NO) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected.

View Article and Find Full Text PDF

Agriculture serves as both a source and a sink of global greenhouse gases (GHGs), with agricultural intensification continuing to contribute to GHG emissions. Climate-smart agriculture, encompassing both nature- and technology-based actions, offers promising solutions to mitigate GHG emissions. We synthesized global data, between 1990 and 2021, from the Food and Agriculture Organization (FAO) of the United Nations to analyze the impacts of agricultural activities on global GHG emissions from agricultural land, using structural equation modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!