Background: Insulin-like growth factor I (IGF-I) is an anabolic hormone that is known to induce skeletal muscle hypertrophy. However, the signaling pathways mediating IGF-I's hypertrophic effect in vivo are unknown.
Method: The phosphorylation of 46 proteins was investigated by Kinetworks proteomic analysis in the gastrocnemius muscle of transgenic mice overexpressing IGF-I myosin light chain/muscle specific IGF-I (MLC/mlgf-I) and wild-type littermates.
Results: In the hypertrophic muscle of MLC/mlgf-I mice, we observed increased phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1; 53% increase), the mammalian target of rapamycin (mTOR; 112% increase), and p70 S6 kinase (p70S6K) (254% increase) but no significant change in Akt phosphorylation (4% decrease). Furthermore, we found reduced phosphorylation of MAP kinase kinase 1 and 2 (MEK1/2) (60% decrease) and of mitogen-activated protein kinase kinases 3 and 6 (MKK3/6) (50% decrease) in muscle from transgenic mice, suggesting that the hypertrophic and mitogenic effects of IGF-I are mediated via distinct signaling pathways in skeletal muscle and that inhibition of the mitogen-activated protein (MAP) kinase pathway may be required for the IGF-I-induced hypertrophic effect. Single-fiber analysis revealed a trend toward a higher percentage of the fast twitch fibers (IIb and IIx) in the transgenic mice.
Conclusion: Persistent overexpression of IGF-I in mice skeletal muscle results in hypertrophy, which is likely mediated via the mTOR/p70S6K pathway, potentially via an Akt-independent signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228637 | PMC |
http://dx.doi.org/10.2310/6650.2005.00309 | DOI Listing |
Sports Med Open
January 2025
Institute of Primary Care, University of Zurich, Zurich, Switzerland.
Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.
Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.
Nat Metab
January 2025
Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.
Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.
View Article and Find Full Text PDFSkeletal Radiol
January 2025
Department of Orthopedics and Traumatology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
Objective: Total hip arthroplasty through the Hardinge approach damages the hip abductor muscles. MRI can be used to assess adverse postoperative events. In this prospective randomized controlled trial, we evaluated MRI findings and whether platelet-rich plasma affected postoperative healing of the gluteal muscles (gluteus medius and minimus).
View Article and Find Full Text PDFSci Rep
January 2025
Postgraduate Program in Food and Nutrition at the Federal University of Piauí (PPGAN/UFPI), Teresina, Piauí, Brazil.
Body composition is a determining factor in the physical performance of cyclists, directly influencing efficiency and power during competitions. Understanding these aspects can help optimize training and maximize results. This study aimed to analyze the influence of body composition on physical performance in mountain bike athletes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!