Human pharmacokinetic parameters are often predicted prior to clinical study from in vivo preclinical pharmacokinetic data. Recent data suggest that extrapolation of monkey pharmacokinetic data tends to be the most accurate method for predicting human clearance. In this study, the molecular features of a 103-compound dataset were analyzed to determine whether calculated physiochemical properties may be used to predict the extrapolative success or failure of rat, dog, and monkey data to project human pharmacokinetic parameters. Molecular properties (molecular weight, molar refractivity, log of the octanol-water partition coefficient, polar surface area, hydrogen bond donor/acceptor count, and rotatable bond count) were calculated, and relationships were sought for each preclinical species between extrapolative outcome for human clearance, distributional volume, and mean residence time, and each molecular feature or combination of features. The findings indicated that calculated molecular properties may be used both to predict extrapolative outcome for human pharmacokinetic properties from preclinical animal data, and to prospectively aid in the selection of an appropriate preclinical species in which to generate preclinical data to more reliably project human clearance. These observations demonstrate the utility of a combined computational and in vivo animal testing approach to projecting human pharmacokinetic parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.20373DOI Listing

Publication Analysis

Top Keywords

human pharmacokinetic
20
pharmacokinetic parameters
16
molecular properties
12
human clearance
12
rat dog
8
dog monkey
8
monkey data
8
extrapolative success
8
success failure
8
pharmacokinetic data
8

Similar Publications

Sotorasib is a novel KRAS inhibitor that has shown robust efficacy, safety, and tolerability in patients with KRAS mutation. The objectives of the population pharmacokinetic (PK) analysis were to characterize sotorasib population PK in healthy subjects and patients with advanced solid tumors with KRAS mutation from 6 clinical studies, evaluate the effects of intrinsic and extrinsic factors on PK parameters, and perform simulations to further assess the impact of identified covariates on sotorasib exposures. A two-compartment disposition model with three transit compartments for absorption and time-dependent clearance and bioavailability well described sotorasib PK.

View Article and Find Full Text PDF

Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.

View Article and Find Full Text PDF

Migraine is a debilitating headache disorder. The disease has neurovascular origin and migraine attacks can be elicited by vasodilative neuropeptides such as alpha calcitonin gene-related peptide (αCGRP). Antagonizing CGRP actions in migraine patients has proven clinically efficient.

View Article and Find Full Text PDF

The simultaneous administration of multiple drugs within identical nanocarriers to cancer cells or tissues can result in the effective action of drugs at reduced concentrations. In this investigation, PAMAM dendrimers (G4-PAMAM) were employed to link with methotrexate (MTX) using DCC/NHS chemistry and followed by the entrapment of curcumin (Cur) within it. The establishment of covalent bonds between MTX and the PAMAM dendrimer led to PAMAM-MTX interaction, verified and described through FT-IR.

View Article and Find Full Text PDF

Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!