Optimization of acid hydrolysis of sugarcane bagasse and investigations on its fermentability for the production of xylitol by Candida guilliermondii.

Appl Biochem Biotechnol

Departamento de Engenharia Bioquímica, Escola de Química/CT, Universidade Federal do Rio de Janeiro, RJ, CEP: 21949-900, Brazil.

Published: June 2005

The dilute-acid hydrolysis of sugarcane bagasse was optimized using a statistical experimental design resulting in hydrolysates containing 57.25 g/L of xylose, which were fermented with a high inoculum concentration (10 g/L of the yeast Candida guilliermondii IM/UFRJ 50088). The addition of urea reduced the time of conversion (tC) to 75 h (without nitrogen source addition tC > 127 h), and, consequently, improving the rates of xylitol bioproduction. Fermentator experiments, using the optimized conditions, resulted in enhanced conversion rates, reducing tC to 30 h. The stability of the yeast in the hydrolysate was also verified in a 480-h cultivation.

Download full-text PDF

Source
http://dx.doi.org/10.1385/abab:122:1-3:0741DOI Listing

Publication Analysis

Top Keywords

hydrolysis sugarcane
8
sugarcane bagasse
8
candida guilliermondii
8
optimization acid
4
acid hydrolysis
4
bagasse investigations
4
investigations fermentability
4
fermentability production
4
production xylitol
4
xylitol candida
4

Similar Publications

The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.

View Article and Find Full Text PDF

Green process for xylo-oligosaccharide production from acetic acid hydrolysis of sugarcane bagasse by an integrated membrane technology and activated carbon adsorption.

J Environ Manage

January 2025

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

Xylooligosaccharides (XOS), consisting 2-6 xylose residues, are a new type of prebiotic and functional oligosaccharides, and can usually be produced from the xylan-riched lignocellulosic biomass by acetic acid (HAc) hydrolysis, while the waste HAc was a problem to the environment. In this study, the main aim was to recover and reuse the waste HAc in XOS production. First, it was found that a temperature of 190 °C and a hydrolysis time of 60 min were favorable for XOS production by HAc hydrolysis, and the by-products xylose and furfural were the main inhibitors, hindering the reuse of the waste HAc.

View Article and Find Full Text PDF

The aquatic ecosystem is negatively impacted by organic dye contamination, which is now one of the factors leading to environmental pollution. The present investigation involved the synthesis of nanocellulose (NC) and nanocellulose modified with NiO (NC/NiO) composite using acid hydrolysis and a one-step precipitation technique for NC and NiO, respectively. Malachite green (MG) dye was catalytically removed from an aqueous solution using the two products, which were mechanically homogenized.

View Article and Find Full Text PDF

β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required.

View Article and Find Full Text PDF

The co-production of xylose, fermentable glucose and β-O-4 linkage-rich lignin through efficiently dismantling sugarcane bagasse.

Int J Biol Macromol

December 2024

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:

As an "upstream" process in biorefinery, biomass dismantling can dismantle the natural stable structure of lignocellulosic biomass and separate its three major components. To increase the value of the entire biomass by fully utilizing the three main components (cellulose, lignin, and hemicellulose), this study proposes a two-step decomposition system combining formic acid (FA) pretreatment and ethylene glycol-NaOH (EGA) dismantling, aiming to effectively convert sugarcane bagasse into xylose, fermentable glucose, and high-value lignin. In the first step, FA pretreatment removed 79.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!