In the vasodilated and septic patient, the impedance method of measuring cardiac output (CO) may underestimate the true value. In this study, we sought to determine whether impedance CO (COIC) measurements are influenced by total peripheral resistance (TPR). In eight anesthetized and ventilated dogs, a high-precision flowprobe was placed on the ascending aorta, and direct CO was measured (CO flowprobe (COFP)). Mean arterial blood pressure was measured from the femoral artery. Simultaneous COIC measurements were made. TPR (mean arterial blood pressure x 80/COFP) was varied over 1-2 h by using infusions of phenylephrine and adrenaline and inhaled halothane. The bias between methods of CO measurement (COIC-COFP) was calculated and compared with TPR by using correlation and regression analysis. A total of 547 pairs of CO measurements were collected from the 8 dogs as TPR was varied. COFP changed by a mean of 190% (range, 89%-425%), and TPR changed by a mean of 266% (range, 94%-580%) during the experiment. The impedance method underestimated CO when TPR was low and overestimated CO when TPR was high. There was a logarithmic relationship between the CO bias and TPR. Correlation coefficients (r) between the CO bias and TPR ranged from 0.46 to 0.89 (P < 0.0001). The bias changed by 0.62 +/- 1.8 L/min, or by 34%, every time TPR halved or doubled. This finding explains the poor agreement between COIC and other methods of CO measurement found in validation studies involving critically ill patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1213/01.ANE.0000150602.40554.EB | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!