It is established that androgens and unidentified Sertoli cell (SC)-derived factors can influence the development of adult Leydig cells (LC) in rodents, but the mechanisms are unclear. We evaluated adult LC development and function in SC-selective androgen receptor (AR) knockout (SCARKO) and complete AR knockout (ARKO) mice. In controls, LC number increased 26-fold and LC size increased by approximately 2-fold between 12 and 140 d of age. LC number in SCARKOs was normal on d 12, but was reduced by more than 40% at later ages, although LC were larger and contained more lipid droplets and mitochondria than control LC by adulthood. ARKO LC number was reduced by up to 83% at all ages compared with controls, and LC size did not increase beyond d 12. Serum LH and testosterone levels and seminal vesicle weights were comparable in adult SCARKOs and controls, whereas LH levels were elevated 8-fold in ARKOs, although testosterone levels appeared normal. Immunohistochemistry and quantitative PCR for LC-specific markers indicated steroidogenic function per LC was probably increased in SCARKOs and reduced in ARKOs. In SCARKOs, insulin-like factor-3 and estrogen sulfotransferase (EST) mRNA expression were unchanged and increased 3-fold, respectively, compared with controls, whereas the expression of both was reduced more than 90% in ARKOs. Changes in EST expression, coupled with reduced platelet-derived growth factor-A expression, are potential causes of altered LC number and function in SCARKOs. These results show that loss of androgen action on SC has major consequences for LC development, and this could be mediated indirectly via platelet-derived growth factor-A and/or estrogens/EST.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2005-0300DOI Listing

Publication Analysis

Top Keywords

development function
8
leydig cells
8
androgen receptor
8
compared controls
8
testosterone levels
8
platelet-derived growth
8
growth factor-a
8
scarkos
5
reduced
5
development
4

Similar Publications

Boreal forests are heading for an open state.

Proc Natl Acad Sci U S A

January 2025

Environmental Sciences Department, Wageningen University & Research, Wageningen 6708 PB, The Netherlands.

The boreal forest biome is warming four times faster than the global average. Changes so far are moderate, but time lags in responses may transiently maintain forest states which are no longer supported by current environmental conditions. Here, we explore whether tree cover dynamics hint at the state to which the biome may be shifting.

View Article and Find Full Text PDF

The interaction of bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge.

Proc Natl Acad Sci U S A

January 2025

Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

In many plants, the asymmetric division of the zygote sets up the apical-basal body axis. In the cress , the zygote coexpresses regulators of the apical and basal embryo lineages, the transcription factors WOX2 and WRKY2/WOX8, respectively. WRKY2/WOX8 activity promotes nuclear migration, cellular polarity, and mitotic asymmetry of the zygote, which are hallmarks of axis formation in many plant species.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!