Our understanding of the role of Ca2+ in blue/UV-A photoreceptor signaling in a single cell is limited. Insight into calcium signaling has now been attained in Physcomitrella patens and its cryptochrome and phototropin knock-outs. Physcomitrella patens caulonemal filaments grow in the dark by apical extension and their apical cells are highly polarized. Fura-2-dextran ratio images of the apical cell from wild type (WT), Ppcry1a/1b and PpphotA2/B1/B2 were obtained immediately following UV-A exposure (30 microW cm(-2) at 340 nm for 1,000 ms plus 30 microW cm(-2) at 380 nm for 1,000 ms) [abbreviated as 1,000 ms (340/380 nm)] and demonstrated two intracellular waves: a Ca2+ wave from the growing apical tip through the apical cap, and a wave from the junction of the neighboring cell through the vacuolar, nuclear and plastid regions. In WT, the UV-A-induced tip wave increase had a magnitude of 454.0 +/- 40 nM, traveled at a rate of 3.4 +/- 0.7 microm s(-1) and was complete within 26.6 +/- 2.3 s, while the basal vacuolar wave had a magnitude of 596.8 +/- 110 nM, a rate of 8.4 +/- 0.8 microm s(-1) and duration of 25.3 +/- 4.9 s. Subsequent Ca2+ spikes of similar magnitude followed these waves. The amplitude of the Ca2+ waves in the apical cap and basal vacuolar regions of Ppcry1a/1b were higher than those in the WT, while the duration of those in PpphotA2/B1/B2 was longer. Subsequent Ca2+ spikes occurred in WT and Ppcry1a/1b but not in PpphotA2/B1/B2. When Mn2+ was added to the culture medium, the [Ca2+](cyt) increase was delayed, did not move as a wave and lasted longer. The results indicate that plants respond to blue light and UV-A radiation by generating a wave of changes in the [Ca2+](cyt). The characteristics of these Ca2+ waves were dependent upon cryptochrome and phototropin. Blue/UV-A signaling in P. patens appears to differ from that in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pci131 | DOI Listing |
Nat Commun
January 2025
School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.
Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2025
Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan. Electronic address:
Plant responses to the water environment are mediated by ethylene (submergence response) and abscisic acid (ABA, drought response). Ethylene is perceived by a family of histidine kinase receptors (ETR-HKs), which regulate the activity of the downstream B3 Raf-like (RAF) kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) in an ethylene-dependent manner. We previously demonstrated in the moss Physcomitrium patens that SNF1-related protein kinase 2 (SnRK2), an essential kinase in osmostress responses in land plants, is activated by the B3-RAF kinase ARK, which is also regulated by ETR-HKs in an ABA- and osmostress-dependent manner.
View Article and Find Full Text PDFSci Adv
December 2024
Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
Similar to cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β-1,4-glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced viable CESA-deficient mutants of the moss to investigate CSLD function without interfering CESA activity.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
Isoprenoids comprise the largest group of plant specialized metabolites. 1-deoxy-D-xylulose-5-phosphate synthase (DXS) is one of the major rate-limiting enzymes in their biosynthesis. The DXS family expanded structurally and functionally during evolution and is believed to have significantly contributed to metabolic complexity and diversity in plants.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan.
The sexual reproductive organs of bryophytes - in which gametes necessary for fertilization are produced, namely, male antheridia and female archegonia - are formed from vegetative haploid gametophytes. In dioicous bryophytes such as Marchantia polymorpha, the genes within the sex-determining regions in distinct sexual strains have been identified. However, in monoicous bryophytes such as Physcomitrium patens, how the two sex fates are specified on the same gametophyte remained unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!