Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on a molecular simulation study of the homogeneous nucleation of CO2 in the supercooled liquid at low pressure (P = 5 MPa) and for degrees of supercooling ranging from 32% to 60%. In all cases, regardless of the degree of supercooling, the structure of the crystal nuclei is that of the Pa3 phase, the thermodynamically stable phase. For the more moderate degree of supercooling of 32%, the nucleation is an activated process and requires a method to sample states of high free energy. In this work, we apply a series of bias potentials, which promote the ordering of the centers of mass of the molecules and allow us to gradually grow crystal nuclei. The reliability of the results so obtained is assessed by studying the evolution of the nuclei in the absence of any bias potential, and by determining their probability of growth. We estimate that the size of the critical nucleus, for which the probability of growth is 0.5, is approximately 240 molecules. Throughout the nucleation process, the crystal nuclei clearly exhibit a Pa3 structure, in apparent contradiction with Ostwald's rule of stages. The other polymorphs have a much larger free energy. This makes their formation highly unlikely and accounts for the fact that the nucleation of CO2 proceeds directly in the stable Pa3 structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1897696 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!