Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B3u<--C2H4X1A(g) band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2D4 results to be not as good as those for C2H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1896362DOI Listing

Publication Analysis

Top Keywords

calculation franck-condon
4
franck-condon factors
4
factors including
4
including anharmonicity
4
anharmonicity simulation
4
simulation c2h4+x2b3u
4
calculation
1
factors
1
including
1
anharmonicity
1

Similar Publications

The potential energy curves, dipole moments and transition dipole moments of the 14 Λ-S states and 30 Ω states of TlBr cation were performed using the multi-reference configuration interaction method. The Davidson correction and spin-orbit coupling effects were also considered. The spectroscopic properties and transition properties of TlBr cation were reported at the first time.

View Article and Find Full Text PDF

Vibronic coupling and multiple electronic states effect play a pivotal role in the molecular spectroscopy of large systems. Herein, we present a detailed theoretical study on the absorption (ABS) and electronic circular dichroism (ECD) spectra of three [7]helicene derivatives in chloroform, with a particular emphasis on the significance of vibronic coupling and the multiple electronic states effect in spectral simulations. The vertical gradient (VG) and vertical Hessian (VH) models, incorporating the Franck-Condon (FC) effect and Herzberg-Teller (HT) contribution, are considered in the vibronic calculations.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Ab Initio Study of Electron Capture in Collisions of Protons with CO Molecules.

Molecules

December 2024

Departamento de Química, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

Ab initio calculations of cross sections for electron capture by protons in collisions with CO are carried out at energies between 100 eV/u and 50 keV/u, employing a semiclassical method within the Franck-Condon framework. The scattering wave function is expanded in a set of ab initio electronic wave functions of the HCO supermolecule. The calculation is performed on several trajectory orientations to obtain orientation-averaged total cross sections.

View Article and Find Full Text PDF

Fluorescence spectra of single terrylene molecules adsorbed on hexagonal boron nitride flakes were recorded at cryogenic temperatures. The pure electronic transitions of terrylene molecules are spread over a broad energy scale from 570 to 610 nm. Surprisingly, peaks in the vibrationally resolved fluorescence spectrum show intensity variations of ≤20-fold between molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!