We present a detailed analysis of the rotational excitations of the linear OCS molecule solvated by a variable number of para-hydrogen molecules (9 < or = N < or = 17). The effective rotational constant extracted from the fit of the rotational energy levels decreases up to N = 13, indicating near-rigid coupling between OCS rotations and para-hydrogen motion. Departure from rigidity is instead seen for larger clusters with 14 < or = N < or = 17. Path-integral Monte Carlo calculations show that the N dependence of the effective rotational constant can be explained in terms of a partial superfluid response of para-hydrogen to rotations about an axis perpendicular to the OCS axis. Complete para-hydrogen superfluid response to rotations about the OCS axis is found for N > or = 10.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1913552 | DOI Listing |
Nano Lett
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
Ultrafine droplets are crucial in materials processing and nanotechnology, with applications in nanoparticle preparation, water evaporation, nanodrug delivery, nanocoating, among numerous others. While the potential of turbulent gas flow to enhance liquid breakup is acknowledged, constructing turbulence-driven atomizers for ultrafine droplets remains challenging. Herein, we report the innovation of grid-turbulence atomization (GTA), which employs a rotating mesh to deliver liquid and an air knife to spray ultrafine droplets.
View Article and Find Full Text PDFObjectives: To evaluate the efficacy, safety, and stability of EyeCryl Phakic intraocular lens (IOL) implantation.
Methodology: This retrospective study was conducted in Maghrabi Hospital in Medina to review 31 patients who underwent posterior chamber phakic IOL (EyeCryl Phakic IOL) for surgical correction of myopia or astigmatism. The data were collected from patient medical records after obtaining their consents.
JACC Case Rep
January 2025
Cardiovascular Division, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
A 73-year-old man presented with acute coronary syndrome secondary to stent failure. Intravascular imaging identified a recurrent protruding calcific nodule as the mechanism, which was effectively treated with low-speed rotablation, resulting in ablation of the nodule allowing the application of a drug-coated balloon.
View Article and Find Full Text PDFCyborg Bionic Syst
July 2022
Institute of Apicultural Research, Chinese Academy of Agricultural Science, 100193, China.
The artificial locomotion control strategy is the fundamental technique to ensure the accomplishment of the preset assignments for cyborg insects. The existing research has recognized that the electrical stimulation applied to the optic lobes was an appropriate flight control strategy for small insects represented by honeybee. This control technique has been confirmed to be effective for honeybee flight initiation and cessation.
View Article and Find Full Text PDFAppl Magn Reson
October 2024
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520 USA.
Unlabelled: Temperature-dependent DEER effects are observed as a function of methyl rotation by either leucine- or nitroxide-specific protonated methyl groups in an otherwise deuterated background. Both species induce a site-specific enhancement in the apparent relaxation of the paramagnetic nitroxide label. The presence of a single protonated methyl group in close proximity (4-10 Å) to only one of the two nitroxide rotamer ensembles in AviTagged immunoglobulin-binding B domain of protein A results in a selective and substantial decrease in , manifested by differential decay of the peak intensities in the bimodal distance distribution as a function of the total dipolar evolution time, temperature, or both.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!