Periodontics has a long history of utilizing advances in science to expand and improve periodontal therapies. Recently the American Academy of Periodontology published the findings of the Contemporary Science Workshop, which conducted state-of-the-art evidence-based reviews of current and emerging areas in periodontics. The findings of this workshop provide the basis for an evidence-based approach to periodontal therapy. While the workshop evaluated all areas of periodontics, it is in the area of tissue engineering that the most exciting advances are becoming a reality.
Download full-text PDF |
Source |
---|
Dentomaxillofac Radiol
January 2025
Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil.
Objectives: This meta-research assessed methodologies used for evaluating peri-implant marginal bone levels on digital periapical radiographs in randomised clinical trials published between 2019 and 2023.
Methods: Articles were searched in four databases. Data on methods for assessing peri-implant marginal bone levels were extracted.
Front Immunol
January 2025
Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
Periodontal disease is a highly prevalent disease worldwide that seriously affects people's oral health, including gingivitis and periodontitis. Although the current treatment of periodontal disease can achieve good control of inflammation, it is difficult to regenerate the periodontal supporting tissues to achieve a satisfactory therapeutic effect. In recent years, due to the good tissue regeneration ability, the research on Mesenchymal stromal/stem cells (MSCs) and MSC-derived exosomes has been gradually deepened, especially its ability to interact with the microenvironment of the body in the complex immunoregulatory network, which has led to many new perspectives on the therapeutic strategies for many diseases.
View Article and Find Full Text PDFMed Image Anal
January 2025
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China; School of Artificial Intelligence, Nanjing University, Nanjing, 210023, China.
Machine learning is widely used in dentistry nowadays, offering efficient solutions for diagnosing dental diseases, such as periodontitis and gingivitis. Most existing methods for diagnosing periodontal diseases follow a two-stage process. Initially, they detect and classify potential Regions of Interest (ROIs) and subsequently determine the labels of the whole images.
View Article and Find Full Text PDFClin Adv Periodontics
January 2025
Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan.
Background: Successful periodontal regeneration depends on primary wound closure and interdental papilla preservation. In this case study, we introduce a novel triangle papilla access approach (T-PAA) performed under a surgical microscope for treating interdental bone defects. In this novel approach, buccal incisions were used to access root surfaces and bone defects, avoiding interdental papilla incisions and preventing papillary collapse and necrosis.
View Article and Find Full Text PDFClin Adv Periodontics
January 2025
Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India.
Background: Surgical methods of gingival depigmentation can be challenging, particularly if the gingival phenotype is thin due to the risk of gingival recession and bone exposure. Thus, exploring alternative, non-surgical, minimally invasive treatment modalities is warranted. In dermatology, vitamin C is extensively used for depigmentation and microneedling for collagen induction, with limited literature about its usage for improving gingival esthetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!