Aim: To express the complete PreS region of HBV in E.coli with good solubility and stability, and to establish an effective method for purification of the recombinant PreS protein.
Methods: The complete PreS region (PreS1 and PreS2) was fused into a series of tags including glutathione S-transferase (GST), dihydrofolate reductase (DHFR), maltose binding protein (MBP), 6x histidine, chitin binding domain (CBD), and thioredoxin, respectively. Expression of recombinant PreS fusion proteins was examined by SDS-PAGE analysis and confirmed by Western blot. Two fusion proteins, thio-PreS, and PreS-CBD, with desirable solubility and stability, were subjected to affinity purification and further characterization.
Results: Recombinant PreS fusion proteins could be synthesized with good yields in E.coli. However, most of these proteins except for thio-PreS and PreS-CBD were vulnerable to degradation or insoluble as revealed by SDS-PAGE and Western blot. Thio-PreS could be purified by affinity chromatography with nickel-chelating sepharose as the matrix. However, some impurities were also co-purified. A simple freeze-thaw treatment yielded most of the thio-PreS proteins in solution while the impurities were in the precipitate. Purified thio-PreS protein was capable of inhibiting the binding of HBV virion to a specific monoclonal antibody against an epitope within the PreS1 domain.
Conclusion: Increased solubility and stability of the complete PreS region synthesized in E.coli can be achieved by fusion with the thioredoxin or the CBD tag. A simple yet highly effective method has been established for the purification of the thio-PreS protein. Purified thio-PreS protein likely assumes a native conformation, which makes it an ideal candidate for studying the structure of the PreS region as well as for screening antivirals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305840 | PMC |
http://dx.doi.org/10.3748/wjg.v11.i20.3060 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!