Heterotrimeric G-proteins and their regulators are emerging as important players in modulating microtubule polymerization dynamics and in spindle force generation during cell division in C. elegans, D. melanogaster and mammals. We recently demonstrated that RGS14 is required for completion of the first mitotic division of the mouse embryo, and that it regulates microtubule organization in vivo. Here, we demonstrate that RGS14 is a microtubule-associated protein and a component of the mitotic spindle that may regulate microtubule polymerization and spindle organization. Taxol-stabilized tubulin, but not depolymerized tubulin coimmunoprecipitates with RGS14 from cell extracts. Furthermore, RGS14 copurifies with tubulin from porcine brain following multiple rounds of microtubule polymerization/depolymerization and binds directly to microtubules formed in vitro from pure tubulin (KD = 1.3 +/- 0.3 microM). Both RGS14 and Galpha(i1) in the presence of exogenous GTP promote tubulin polymerization, which is dependent on additional microtubule-associated proteins. However, preincubation of RGS14 with Galpha(i1)-GDP precludes either from promoting microtubule polymerization, suggesting that a functional GTP/GDP cycle is necessary. Finally, we show that RGS14 is a component of mitotic asters formed in vitro from HeLa cell extracts and that depletion of RGS14 from cell extracts blocks aster formation. Collectively, these results show that RGS14 is a microtubule-associated protein that may modulate microtubule dynamics and spindle formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4161/cc.4.7.1787 | DOI Listing |
Brain Struct Funct
September 2020
Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
Ventromedial thalamic axons innervate cortical layer I and make contacts onto the apical dendritic tuft of pyramidal neurons. Optical stimulation of ventromedial thalamic axon terminals in prefrontal cortical areas in mouse brain slices evokes responses in corticocortical, corticothalamic and layer I inhibitory interneurons. Using anterograde tracing techniques and immunohistochemistry in male Sprague-Dawley rats, we provide anatomical evidence that ventromedial thalamic axon terminals in prelimbic cortex make contacts onto pyramidal neurons and, in particular, onto corticostriatal neurons as well as layer I inhibitory interneurons.
View Article and Find Full Text PDFCell Cycle
July 2005
Siebens-Drake Research Institute, Department of Physiology and Pharmacology, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada.
Heterotrimeric G-proteins and their regulators are emerging as important players in modulating microtubule polymerization dynamics and in spindle force generation during cell division in C. elegans, D. melanogaster and mammals.
View Article and Find Full Text PDFMethods Enzymol
February 2005
Department of Physiology and Pharmacology, London, Ontario, Canada.
Microtubules are dynamic polymers essential for mitosis and cell division, intracellular transport, and maintaining cell organization and structure. Microtubule dynamics are tightly controlled in a context-specific manner by a myriad of microtubule-associated proteins. We have identified regulator of G-protein signaling-14 (RGS14) as a microtubule-associated protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!