Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Duplication, resulting in gene redundancy, is well known to be a driving force of evolutionary change. Gene families are therefore useful targets for approaching genome evolution. To address the gene death process, we examined the fate of the 10-member-large S288C DUP240 family in 15 Saccharomyces cerevisiae strains. Using an original three-step method of analysis reported here, both slightly and highly degenerate DUP240 copies, called pseudo-open reading frames (ORFs) and relics, respectively, were detected in strain S288C. It was concluded that two previously annotated ORFs correspond, in fact, to pseudo-ORFs and three additional relics were identified in intergenic areas. Comparative intraspecies analysis of these degenerate DUP240 loci revealed that the two pseudo-ORFs are present in a nondegenerate state in some other strains. This suggests that within a given gene family different loci are the target of the gene erasure process, which is therefore strain dependent. Besides, the variable positions observed indicate that the relic sequence may diverge faster than the flanking regions. All in all, this study shows that short conserved protein motifs provide a useful tool for detecting and accurately mapping degenerate gene remnants. The present results also highlight the strong contribution of comparative genomics for gene relic detection because the possibility of finding short conserved protein motifs in intergenic regions (IRs) largely depends on the choice of the most closely related paralog or ortholog. By mapping new genetic components in previously annotated IRs, our study constitutes a further refinement step in the crucial stage of genome annotation and provides a strategy for retracing ancient chromosomal reshaping events and, hence, for deciphering genome history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/msi170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!