Classification of essential tremor.

Clin Neuropharmacol

Department of Neurology, University of Kansas Medical Center, Kansas City 66103.

Published: April 1992

Classification of essential tremor was attempted using tremor frequency; tremor duration; family history of tremor; responsiveness to alcohol, propranolol, and primidone; muscle contraction pattern; and long-latency reflexes. Sixty-one patients were evaluated. The majority of patients had a tremor frequency less than 7.0 Hz, a positive family history, and a positive response to alcohol. Approximately 46% of patients had a beneficial response with propranolol and 71% with primidone. Tremor frequency was inversely correlated with age and directly correlated with an antagonist pattern of muscle contraction. Enhanced long-latency reflexes were not found. Other characteristics of essential tremor were not significantly correlated. It is concluded that essential tremor can not be classified into subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00002826-199204000-00001DOI Listing

Publication Analysis

Top Keywords

essential tremor
16
tremor frequency
12
tremor
9
classification essential
8
family history
8
muscle contraction
8
long-latency reflexes
8
tremor classification
4
tremor attempted
4
attempted tremor
4

Similar Publications

Background And Objective: Transcranial magnetic resonance-guided focused ultrasound (MRgFUS) has revolutionized ablative treatment of essential tremor in recent years. However, limitations in precision targeting may account for suboptimal efficacy and significant side effects. We describe a simple intraprocedural three-dimensional image-guided lesion shaping technique that can improve overall outcomes of MRgFUS for essential tremor and facilitate expansion to novel indications.

View Article and Find Full Text PDF

Introduction: Intraoperative microelectrode recording (MER) and intraoperative test stimulation may provide vital information for optimal electrode placement and clinical outcome in movement disorders patients treated with deep brain stimulation (DBS). The aims of this retrospective study were to determine (i) how often the planned (imaging based) placements of electrodes were changed due to MER and intraoperative test stimulation in Parkinson's disease (PD), dystonia and essential tremor (ET) patients; (ii) whether the frequency of repositioning changed over time; (iii) whether patients' age or disease duration (in PD) influenced the frequency of repositioning.

Methods: Data on the planned and the final placement of 141 electrodes in 72 consecutive DBS treated patients (52 PD, 11 dystonia, 9 ET) was collected over the first 8 years of DBS implementation in a single center.

View Article and Find Full Text PDF

Background: The clinical pictures of essential tremor (ET) and Parkinson's disease (PD) are often quite mimic at the early stage, and longstanding ET may ultimately develop to PD, that is, PD with "antecedent ET". Early diagnosis and differentiation of the two are essential for predicting disease progression and formulating individualized treatment plans. However, current approaches remain challenging.

View Article and Find Full Text PDF

Protocol for recording physiological signals from the human cerebellum using electroencephalography.

STAR Protoc

January 2025

Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY 10032, USA. Electronic address:

As Purkinje cells of the cerebellum have a very fast firing rate, techniques with high temporal resolution are required to capture cerebellar physiology. Here, we present a protocol to record physiological signals in humans using cerebellar electroencephalography (cEEG). We describe steps for electrode placement and recording.

View Article and Find Full Text PDF

Emerging Deep Brain Stimulation Targets in the Cerebellum for Tremor.

Cerebellum

January 2025

Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Deep brain stimulation (DBS) for essential tremor is remarkably effective, leading to over 80% reduction in standardized tremor ratings. However, for certain types of tremor, such as those accompanied by ataxia or dystonia, conventional DBS targets have shown poor efficacy. Various rationales for using cerebellar DBS stimulation to treat tremor have been advanced, but the varied approaches leave many questions unanswered: which anatomic target, stimulation settings, and indications seem most promising for this emerging approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!