Described are further studies directed towards elucidating the mechanism of the nitric oxide reduction of the copper(II) model system, Cu(dmp)2(2+) (I, dmp=2,9-dimethyl-1,10-phenanthroline). The reaction of I with NO in methanol results in the formation of Cu(dmp)2+ (II) and methyl nitrite (CH3ONO), with a second order rate constant kNO=38.1 M-1 s-1 (298K). The activation parameters for this reaction in buffered aqueous medium were measured to be DeltaH(double dagger)=41.6 kJ/mol and DeltaS(double dagger)=-82.7 kJ/mol deg. The addition of azide ion (N3-) as a competing nucleophile results in a marked acceleration in the rate of the copper(II) reduction. Analysis of the kinetics for the NO reduction of the bulkier Cu(dpp)(2)2+ (IV, dpp=2,9-diphenyl-1,10-phenanthroline) and the stronger oxidant, Cu(NO2-dmp)2(2+) (V, NO2-dmp=5-nitro-2,9-dimethyl-1,10-phenanthroline), gave the second order rate constants kNO=21.2 and 29.3 M-1 s-1, respectively. These results argue against an outer sphere electron transfer pathway and support a mechanism where the first step involves the formation of a copper-nitrosyl (Cu(II)-NO or Cu(I)-NO+) adduct. This would be followed by the nucleophilic attack on the bound NO and the labilization of RONO to form the nitrite products and the cuprous complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.niox.2005.03.006 | DOI Listing |
Materials (Basel)
December 2024
Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland.
The photocatalytic reduction of CO to useful products is an area of active research because it shows a potential to be an efficient tool for mitigating climate change. This work investigated the modification of titania with copper(II) nitrate and its impact on improving the CO reduction efficiency in a gas-phase batch photoreactor under UV-Vis irradiation. The investigated photocatalysts were prepared by treating P25-copper(II) nitrate suspensions (with various Cu concentrations), alkalized with ammonia water, in a microwave-assisted solvothermal reactor.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.
View Article and Find Full Text PDFCopper-based nanoparticles (NPs) are highly valued for their wide-ranging applications, with particular significance in CO reduction. However current synthesis methods encounter challenges in scalability, batch-to-batch variation, and high energy costs. In this work, we describe a novel continuous flow synthesis approach performed at room temperature to help address these issues, producing spherical, colloidally stable copper(ii) oxide (CuO) NPs.
View Article and Find Full Text PDFEnviron Res
January 2025
Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland.
Metallic and nonmetallic nanoparticles are bioactive compounds that exhibit broad resistance to bacteria, fungi, and even viruses. In this paper, a deep eutectic solvent (DES) based on betaine, glucose, and ethylene glycol was used to obtain suspensions of silver, copper, and selenium nanoparticles. Depending on the nanoparticle precursor used, Ag, Cu, and Se nanoparticles (NPs) with an average particle size of 50-100 nm were prepared, and the properties of the products were confirmed by the STEM, XPS, DLS, and UV-VIS methods.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!