A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean). | LitMetric

Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean).

Nitric Oxide

Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, People's Republic of China.

Published: June 2005

Nitric oxide (NO) is an important signaling molecule in plants. The present study aims to investigate the downstream signaling pathways of NO in plants using a proteomic approach. Phaseolus aureus (mung bean) leaf was treated with sodium nitroprusside (SNP), which releases nitric oxide in the form of nitrosonium cation (NO+) upon light irradiation. Changes in protein expression profiles of the SNP treated mung bean leaf were analyzed by two-dimensional gel electrophoresis (2-DE). Comparison of 2-DE electropherograms revealed seven down-regulated and two up-regulated proteins after treatment with 0.5 mM SNP for 6 h. The identities of these proteins were analyzed by a combination of peptide mass fingerprinting and post-source decay using a matrix-assisted-laser-desorption-ionisation-time-of-flight (MALDI-TOF) mass spectrometer. Six out of these nine proteins found are involved in either photosynthesis or cellular metabolism. We have taken our investigation further by studying the effect of NO+ on glucose contents in mung bean leaves. Our results clearly demonstrated that NO+ rapidly and drastically decrease the amount of glucose in mung bean leaves. Moreover, four out of nine of these proteins are chloroplastic isoforms. These results suggested that chloroplasts might be one of the main sub-cellular targets of NO in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2005.03.002DOI Listing

Publication Analysis

Top Keywords

mung bean
20
sodium nitroprusside
8
phaseolus aureus
8
aureus mung
8
nitric oxide
8
bean leaf
8
bean leaves
8
mung
5
bean
5
nitroprusside level
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!