cDNA microarray analysis indicated that COL9A3 is one of the highly expressed genes in the cochlea. This suggests that collagen type IX has a crucial functional role in the inner ear and may be a candidate gene for hearing loss. Mutation analysis was carried out to find possible disease-causing mutations in this gene. The direct-sequencing method was applied to the COL9A3 gene in 159 non-syndromic sensorineural deafness patients and 150 normal controls. Two possible disease-causing mutations were identified: an in-frame deletion of three amino acid residues (G181-P183 del) and a missense mutation (D617E). The patients with the mutations showed a moderate progressive bilateral sensorineural hearing impairment in all frequencies. The present data indicate that mutations of COL9A3 may cause non-syndromic hearing impairment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anl.2005.01.011 | DOI Listing |
World J Surg Oncol
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
Background: This study aims to identify a pathogenic SDHD mutation associated with hereditary head and neck paraganglioma (HNPGL) in a Chinese family and to explore its implications for genetic counseling.
Methods: The study involved a family with 15 members spanning three generations. A 31-year-old patient (II-4) was diagnosed with a left parotid gland tumor and a right carotid body tumor, while both the father and elder sister had right carotid body tumors, and the third sister had bilateral carotid body tumors.
Clin Exp Med
January 2025
Liver & Peritonectomy Unit, Department of Surgery, St George Hospital, Pitney Building, Short Street, Kogarah, NSW, 2217, Australia.
Purpose: This study seeks to resolve a fundamental question in oncology: Why do appendiceal and colorectal adenocarcinomas exhibit distinct liver metastasis rates? Building on our prior hypothesis published in the British Journal of Surgery, our institution has investigated potential DNA mutations within the carcinoembryonic antigen-related cell adhesion molecule (CEACAM5) gene's Pro-Glu-Leu-Pro-Lys (PELPK) motif to evaluate its role as a biomarker for liver metastasis risk.
Methods: Partnering with the Australian Genome Research Facility, the PELPK motif of CEACAM5 was analysed in colorectal and appendiceal adenocarcinomas to detect DNA mutations associated with liver metastasis. Additionally, our institution performed the COPPER trial to assess carcinoembryonic antigen (CEA) levels in portal versus peripheral blood in patients with appendiceal adenocarcinoma and a systematic review and meta-analysis of 136 studies on CEA's prognostic significance among patients with colorectal and appendiceal adenocarcinoma.
Nat Genet
January 2025
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
Understanding the molecular landscape of nonmuscle-invasive bladder cancer (NMIBC) is essential to improve risk assessment and treatment regimens. We performed a comprehensive genomic analysis of patients with NMIBC using whole-exome sequencing (n = 438), shallow whole-genome sequencing (n = 362) and total RNA sequencing (n = 414). A large genomic variation within NMIBC was observed and correlated with different molecular subtypes.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Athinoula A. Martinos Center for Biomedical Imaging, 149 13th St, Charlestown, MA, 02129, USA.
Recent progress in deep learning (DL) is producing a new generation of tools across numerous clinical applications. Within the analysis of brain tumors in magnetic resonance imaging, DL finds applications in tumor segmentation, quantification, and classification. It facilitates objective and reproducible measurements crucial for diagnosis, treatment planning, and disease monitoring.
View Article and Find Full Text PDFSci Rep
January 2025
Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!